铝内衬碳纤维增强复合材料储氢气瓶多尺度失效性能分析
发布时间:2018-05-24 04:41
本文选题:高压储氢气瓶 + 碳纤维增强复合材料 ; 参考:《浙江大学》2012年硕士论文
【摘要】:氢能作为新型清洁能源倍受各国重视,氢燃料电池汽车是氢能利用的一个重要发展方向。氢气储存作为氢能利用的一个难点急需攻克。高压储氢具有成本低、充放速度快、使用简便等优点,其中以铝内衬复合材料高压储氢气瓶应用最为广泛。 复合材料气瓶的设计涉及到渐进失效分析、爆破压力与安全系数等诸多因素,其中复合材料气瓶的渐进失效分析是所有研究工作的基础。目前国内外主要开展了复合材料气瓶宏观渐进失效分析,无法揭示复合材料的细观失效机理,因此本文提出了一种复合材料气瓶细观-宏观多尺度力学性能分析方法,主要研究内容包括以下三部分: 第一部分:气瓶纤维增强复合材料层的细观失效性能研究。首先提取出纤维增强复合材料细观代表性体积单元-四边形胞元模型;然后结合三种失效模式:纤维断裂、基体开裂和界面分离,研究了复合材料细观拉伸载荷下渐进失效过程,并计算单根纤维断裂后的应力重新分布情况;最后根据复合材料层合板拉伸试验来验证研究结果的正确性。 第二部分:运用复合材料多尺度分析方法进行细观到宏观的过渡。基于复合材料渐进均一化多尺度分析方法,提出细观失效特性与宏观刚度退化之间的分析模型,表征复合材料气瓶宏观刚度退化特性。 第三部分:铝内衬纤维增强复合材料储氢气瓶宏观失效力学性能分析。首先,运用ANSYS-APDL语言建立复合材料气瓶参数化有限元模型。运用上述细观-宏观刚度退化分析模型,基于ABAQUS-UMAT编程,对两台不同容积的气瓶进行宏观力学性能分析,预测气瓶宏观渐进失效特性,最后将气瓶爆破压力预测值与试验值进行比较,验证提出的多尺度分析模型的准确性。 本文特色:首先,建立了铝内衬碳纤维增强复合材料储氢气瓶封头和筒体一体的参数化有限元模型。然后,提出了新的复合材料气瓶细观-宏观损伤本构模型,结合有限元分析,开展了气瓶细观-宏观多尺度失效力学性能研究。
[Abstract]:Hydrogen energy as a new clean energy has attracted much attention. Hydrogen fuel cell vehicle is an important development direction of hydrogen energy utilization. Hydrogen storage is a difficult point in hydrogen energy utilization. High pressure hydrogen storage has the advantages of low cost, fast charging and releasing speed, and easy to use, among which aluminum lined composite high pressure hydrogen storage gas cylinders are the most widely used. The design of composite gas cylinder involves many factors, such as progressive failure analysis, blasting pressure and safety factor, among which the progressive failure analysis of composite gas cylinder is the basis of all the research work. At present, macroscopical progressive failure analysis of composite gas cylinders has been carried out at home and abroad, which can not reveal the mechanism of composite materials' microscopical failure. Therefore, a new method of microscope-macro multi-scale mechanical properties analysis of composite gas cylinders is proposed in this paper. The main research contents include the following three parts: The first part: study on the micro-failure performance of cylinder fiber-reinforced composite layer. Firstly, the meso-typical volume unit of fiber reinforced composites, quadrilateral cell model, was extracted, and then three failure modes were combined: fiber fracture, matrix cracking and interface separation. The progressive failure process of composites under microtensile loading was studied, and the stress redistribution after fracture of single fiber was calculated. Finally, the correctness of the results was verified by tensile tests of composite laminated plates. The second part: using multi-scale analysis of composite materials to make the transition from micro-view to macro-scale. Based on the method of progressive homogenization multiscale analysis of composite materials, an analytical model between mesoscopic failure characteristics and macroscopic stiffness degradation is proposed to characterize the macroscopic stiffness degradation characteristics of composite gas cylinders. The third part: analysis of macro failure mechanical properties of aluminum lined fiber reinforced composite hydrogen storage gas cylinder. Firstly, the parameterized finite element model of composite gas cylinder is established by ANSYS-APDL language. The macroscopic mechanical properties of two gas cylinders with different volumes are analyzed by using the above meso-macro stiffness degradation analysis model based on ABAQUS-UMAT programming, and the macroscopic progressive failure characteristics of gas cylinders are predicted. Finally, the prediction value of cylinder blasting pressure is compared with the test value to verify the accuracy of the proposed multi-scale analysis model. The main features of this paper are as follows: firstly, a parameterized finite element model of aluminum lined carbon fiber reinforced composite gas cylinder head and cylinder is established. Then, a new meso-macro damage constitutive model for composite gas cylinders is proposed. The mechanical properties of the composite gas cylinders are studied with finite element analysis.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TB332;TH49
【参考文献】
相关期刊论文 前10条
1 温卫东;徐颖;崔海坡;;低速冲击下复合材料层合板损伤分析[J];材料工程;2007年07期
2 张彦;朱平;来新民;梁新华;;低速冲击作用下碳纤维复合材料铺层板的损伤分析[J];复合材料学报;2006年02期
3 刘军,邱家宏,黄宝宗;微裂纹损伤对纤维复合材料层合板强度的影响[J];工业建筑;2005年10期
4 吴世平;唐绍锋;梁军;杜善义;;周期性复合材料热力耦合性能的多尺度方法[J];哈尔滨工业大学学报;2006年12期
5 周亚平,冯奎,孙艳,周理;述评碳纳米管储氢研究[J];化学进展;2003年05期
6 许炜;陶占良;陈军;;储氢研究进展[J];化学进展;2006年Z1期
7 严义刚,陈云贵,阎康平,郑群;贮氢技术在燃料电池汽车上的应用及展望[J];节能;2004年04期
8 曾庆敦;陈中略;;计及界面损伤的复合材料正交(混杂)叠层板的应力集中分析[J];计算力学学报;2006年02期
9 华玉,何庆芝,罗小东;含圆孔复合材料层板在拉伸载荷下损伤破坏过程的模拟[J];计算结构力学及其应用;1994年04期
10 崔俊芝,曹礼群;基于双尺度渐近分析的有限元算法[J];计算数学;1998年01期
,本文编号:1927721
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1927721.html