MEMS系统中微平板结构声振耦合性能研究
发布时间:2018-05-29 02:57
本文选题:MEMS + 微平板 ; 参考:《力学学报》2016年04期
【摘要】:微机电系统(micro-electro-mechanical system,MEMS)是指内部微结构尺寸在微米甚至纳米量级的微电子机械装置,是一个独立的智能系统.长宽厚均处于微米量级的微平板为MEMS中的典型结构,其声学和力学特性直接影响MEMS的性能.针对同时受声压激励和气膜力(通过考虑相同尺寸微平板振动引入)作用的四边简支微平板结构,应用Cosserat理论和Hamilton原理,建立了考虑微尺度效应(本征长度和Knudsen数)影响的声振耦合理论模型,并通过多重Fourier展开法求解了耦合方程,得到了系统的传声损失结果.通过频域分析,考虑微平板的不同振动频率、振动幅度和板间距,系统研究了不同尺度效应下微结构中气体薄膜所产生的阻尼力对微平板结构传声特性的影响.研究发现尺度效应对于微结构的声振特性影响巨大,振动行为对微结构的传声特性也有很大影响,控制并减小微平板的振动幅度以及增大微平板的间距都能够提高微平板的声振性能.研究结果为MEMS中微平板的稳定性优化设计提供了理论参考.
[Abstract]:Micro-electro-mechanical system (MEMS) is an independent intelligent system, which refers to micro-electromechanical devices with internal microstructures in the order of micron or even nanometers. The microplate with length, width and thickness in the order of micron is a typical structure in MEMS. Its acoustic and mechanical properties directly affect the performance of MEMS. In this paper, the Cosserat theory and Hamilton principle are applied to the four-side simply supported micro-plate structure, which is subjected to sound pressure excitation and film force (by considering the vibration of the same size microplate). A theoretical model of acousto-vibration coupling considering the effect of microscale effect (intrinsic length and Knudsen number) is established. The coupling equation is solved by the method of multiple Fourier expansion, and the result of sound transmission loss is obtained. Based on the frequency domain analysis, considering the different vibration frequencies, vibration amplitude and plate spacing, the influence of damping force produced by the gas film on the sound transmission characteristics of the microplate structure is systematically studied under different scale effects. It is found that the scale effect has a great influence on the acoustic and vibration characteristics of the microstructures, and the vibration behavior also has a great influence on the sound transmission characteristics of the microstructures. Controlling and reducing the vibration amplitude of micro plate and increasing the spacing of micro plate can improve the acoustic vibration performance of micro plate. The results provide a theoretical reference for the stability optimization design of microplates in MEMS.
【作者单位】: 西安交通大学航天航空学院多功能材料与结构教育部重点实验室;西安交通大学航天航空学院机械结构强度与振动国家重点实验室;
【基金】:国家自然科学基金(5152850) 中央高校基本科研专项基金(2014qngz12) 国家留学基金资助项目
【分类号】:TH-39;TH113.1
,
本文编号:1949225
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1949225.html