水介质爆炸容器动力响应分析与实验研究
发布时间:2018-05-29 15:36
本文选题:爆炸容器 + 水下爆炸 ; 参考:《武汉科技大学》2013年博士论文
【摘要】:水介质爆炸容器是进行水下爆炸研究的重要实验设备,而水介质爆炸容器动力响应及控制又是国防、交通及工程建设等领域亟待解决的重要课题之一。为了在确保水介质爆炸容器使用安全的同时,充分发挥实验设备的效能,必须通过对水介质爆炸容器动力响应的研究,较为准确地确定容器壁部弹性范围内的应变与水下爆炸药量、容器直径和壁厚之间的关系,以提高它的承载能力。而目前关于水介质爆炸容器,尤其是模拟深水环境的水介质爆炸容器的研究还很缺乏,很多问题有待于深入探索。 本论文围绕可模拟200m水深环境的10gTNT当量水介质爆炸容器的工程设计,采用理论分析、数值模拟和实验研究相结合的方法,对水介质爆炸容器的动态特性、动力响应及可靠性进行了多方面、多层次的研究,得到了一些有意义的结论。论文主要工作如下: 1.在对水下爆炸冲击波传播和气泡脉动规律分析研究的基础上,结合实验和数值模拟结果,得出了水介质爆炸容器内部爆炸载荷的特性和传播规律,确定了实际爆炸容器的内部载荷,为进一步的爆炸容器响应分析及结构设计奠定了基础。 2.通过对水下爆炸冲击波的特点和水介质爆炸容器的应力状态及响应特征的研究,提出了基于能量吸收法的水介质爆炸容器壳体强度分析方法,优化了容器的壁厚设计,解决了传统设计中材料要求高、重量大、成本高、使用不方便的问题。 3.研制了2米直径可模拟200m水深的10gTNT当量水介质爆炸容器;在容器加压泄压接口、光学窗口、装药/起爆电缆转接接口、测试电缆转接盘法兰等结构方面进行了创新设计。实现了多参数条件下的爆破测试集成化、自动化,解决了深水爆破试验的关键技术问题。 4.建立了一套完整的水介质爆炸容器动力学研究测试系统,对可模拟200m深的10gTNT当量水介质爆炸容器进行了实验研究。通过对实际爆炸容器的载荷和壳体响应的测量与分析,得出了容器的实际作用载荷分布特征、动力响应的初步规律和相关参数计算公式以及不同水深、不同药量对爆炸冲击波峰值压力和气泡脉动半径及周期的影响规律。同时,对容器的安全性进行了考评,验证了所设计的水介质爆炸容器是安全可靠的。 5.对爆炸容器的实测响应进行了频谱分析,得出了不同爆炸载荷当量和外加静压对容器响应频率特征的影响规律。同时利用有限元方法对实际爆炸容器进行了模态分析,结合容器的实测响应频谱特性,得到了容器在实际爆炸载荷作用下的模态响应以及可能的破坏模式。 6.采用非线性有限元方法模拟了椭圆封头圆柱形爆炸容器的作用载荷与动力响应,通过数值计算结果与实测数据及理论计算结果进行对比,得到了水介质爆炸容器的作用载荷与动力响应的变化规律。明确了容器的筒体部分承受最大载荷的部位是中环面,椭圆封头部分承受最大载荷的部位是封头顶端处;由于结构形状及冲击波的汇聚作用,封头顶端处载荷比中环面载荷更大,因此从安全性角度考虑,容器的椭圆封头顶端在设计时应该引起高度重视,在设计中将容器壁厚增加5mm,最后壁厚取为35mm,保证了设备安全。 7.基于爆炸动力学、结构力学、可靠性理论和数值计算,分析了不同结构可靠度计算方法的特点和适用情况,提出了水介质爆炸容器结构动力可靠度分析方法,分别对实际水介质爆炸容器进行了可靠性分析。一方面,建立了应力-强度干涉模型,,将工作压力和材料的许用应力作为随机输入变量,采用一次二阶矩法计算了容器在静态应力强度条件下的可靠度为98.4%;另一方面基于参数化建模方法,利用ANSYS软件的PDS可靠度概率分析模块对容器进行可靠度计算,在同时考虑工作压力、容器壁厚及材料许用应力的随机性的前提下,得到了实际水介质爆炸容器的可靠度为98.2%。充分说明了所设计的容器是安全可靠的,采用能量吸收法进行容器壳体强度计算是合理的。
[Abstract]:The water medium explosive container is an important experimental equipment for underwater explosion research, and the dynamic response and control of the water medium explosive container is one of the important issues to be solved in the fields of national defense, transportation and engineering construction. In order to ensure the safety of the water medium explosive container and give full play to the effectiveness of the experimental equipment, it must be passed through the The study of the dynamic response of a water medium explosive vessel is more accurate to determine the relationship between the strain in the elastic range of the wall and the volume of the underwater explosive, the diameter of the vessel and the thickness of the wall in order to improve its bearing capacity. Many problems need to be explored in depth.
In this paper, the engineering design of a 10gTNT equivalent water medium explosive container, which can simulate the water depth of 200m, is designed. By means of theoretical analysis, numerical simulation and experimental research, the dynamic characteristics, dynamic response and reliability of the water medium explosive container are studied in many aspects, and some meaningful conclusions are obtained. The main work is as follows:
1. on the basis of the analysis of the propagation of shock wave and the law of bubble pulsation, the characteristics and propagation law of the explosion load in the water medium explosive container are obtained by combining the experimental and numerical simulation results. The internal load of the actual explosion vessel is determined, which lays the foundation for the further analysis of the response of the explosion vessel and the structure design. Foundation.
2. through the study of the characteristics of the underwater explosion shock wave and the stress state and response characteristic of the water medium explosive container, the strength analysis method based on the energy absorption method is put forward, which optimizes the wall thickness design of the container, and solves the problem that the material should be high, the weight is big, the cost is high, and the use is inconvenient in the traditional design.
3. a 10gTNT equivalent water medium explosive container with a diameter of 2 meters can be developed to simulate the depth of 200m water. The design of the pressure relief interface of the container, optical window, charge / detonating cable connecting interface, and the testing of the structure of the cable connecting disc flange have been innovated. The explosion test under the condition of multi parameters is integrated, automatic and solved the deep water blasting. Key technical problems of the test.
4. a complete dynamic research and test system for water medium explosion vessel is set up, and the experimental research on the 10gTNT equivalent water medium explosive container with analog 200m depth is carried out. Through the measurement and analysis of the load of the actual explosion vessel and the response of the shell, the characteristics of the actual loading distribution of the container and the preliminary law of the dynamic response are obtained. The formulas for calculating the influence of different water depth and different amount of water on the peak pressure of blast shock wave and the radius of bubble pulsation and the cycle are also calculated. Meanwhile, the safety of the container is evaluated. It is proved that the designed water medium explosive container is safe and reliable.
5. the spectrum analysis of the measured response of the explosion vessel was carried out, and the influence of the different load equivalent and the applied static pressure on the response frequency characteristics of the container was obtained. At the same time, the modal analysis of the actual explosion vessel was carried out by the finite element method, and the actual explosion load of the container was obtained by combining the characteristics of the measured response spectrum of the container. The underlying modal response and possible failure modes.
6. the nonlinear finite element method is used to simulate the action load and dynamic response of the cylindrical explosive container with elliptical head. By comparing the numerical results with the measured data and the theoretical calculation, the variation rules of the loading and dynamic response of the water medium explosive container are obtained. The maximum load of the container's cylinder part bears the maximum load. The part of the charge is the middle torus, the part of the elliptical head which bears the maximum load is the top of the head. Because of the structure shape and the impact of the shock wave, the load of the load on the top of the head is greater than that of the middle ring. Therefore, from the point of view of safety, the top of the elliptical head of the container should be attached great importance to the design of the container. The wall thickness is increased by 5mm and the final wall thickness is 35mm, which ensures the safety of the equipment.
7. based on the explosion dynamics, structural mechanics, reliability theory and numerical calculation, the characteristics and application of different structural reliability calculation methods are analyzed. The dynamic reliability analysis method of the structure of the water medium explosive container is put forward, and the reliability analysis of the actual water medium explosive container is analyzed. On the one hand, the stress strength interference is established. In the model, the working pressure and the allowable stress of the material are taken as random input variables, and the reliability of the vessel under static stress intensity is calculated by a two order moment method. On the other hand, based on the parameterized modeling method, the reliability of the container is calculated by using the PDS reliability probability analysis module of ANSYS software, and it is considered at the same time. On the premise of the working pressure, the thickness of the vessel wall and the randomness of the allowable stress of the material, the reliability of the actual water medium explosive container is 98.2%. fully explained that the designed container is safe and reliable. The energy absorption method is reasonable to calculate the strength of the vessel shell.
【学位授予单位】:武汉科技大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:TH49
【参考文献】
相关期刊论文 前10条
1 苏华,陈网桦,吴涛,葛桂兰,范秀琴,刘荣海;炸药水下爆炸冲击波参数的修正[J];火炸药学报;2004年03期
2 周霖;徐少辉;徐更光;;炸药水下爆炸能量输出特性研究[J];兵工学报;2006年02期
3 陈石勇;胡八一;谷岩;董奇;;球形爆炸容器动力响应的实验研究[J];兵工学报;2010年04期
4 崔云航,吴腾芳,朱立新,龙源,夏卫国,张冀峰;壳体理论在水压爆破中的应用[J];爆破;2002年02期
5 颜事龙;条形药包水下爆炸能量计算[J];爆破器材;1997年05期
6 钱胜国 ,张伟林 ,徐光耀;近自由水面水下爆炸时水中激波特性[J];爆炸与冲击;1983年04期
7 赵士达;爆炸容器[J];爆炸与冲击;1989年01期
8 胡八一,刘仓理,谷岩,罗兵,林洪书,陈杰富;真实爆炸容器水压应变测试及分析[J];爆炸与冲击;2003年03期
9 张亚军,张梦萍,徐胜利,张鹏;爆炸容器内冲击波系演化及壳体响应的数值研究[J];爆炸与冲击;2003年04期
10 张振华,朱锡,白雪飞;水下爆炸冲击波的数值模拟研究[J];爆炸与冲击;2004年02期
本文编号:1951405
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1951405.html