可重构制造系统组态重构优化方法研究
本文选题:可重构制造 + 组态重构 ; 参考:《重庆大学》2012年硕士论文
【摘要】:面对日新月异的市场变化与日益提高的产品定制化程度,制造业面临着如何快速响应市场需求的巨大挑战。传统的刚性自动化生产线能通过大批量生产提高效益;柔性制造系统虽然能缩短产品生产周期,但投资过大,资本回收期过长,因此,把大规模生产和柔性制造系统特点充分结合的全新制造系统——可重构制造系统应运而生的。设备的选型与布局优化、设备及系统的可靠性以及在制品缓存数量设置及其优化等是可重构制造系统设计与重构的关键技术,本文将从这几个方面展开对可重构制造系统组态重构优化的研究。 可重构制造系统组态重构是在传统制造系统设备布局和规划的基础上进一步的分析和探讨,不仅考虑了设备布局中将加工设备、物流搬运设备等各种设备在满足一定约束条件下的合理放置,而且还考虑了制造设备数量、设备能力、设备状态可靠度、设备负荷、在制品缓存数量设置以及加工工艺等因素的影响,更加强调生产的动态性和市场需求的复杂性对可重构制造系统组态重构的影响。 本文研究了可重构制造系统重构特征,探讨了可重构制造系统组态、在制品缓存以及设备可靠度之间的联系,把可靠性工程中的设备可靠度引入到制造系统组态重构中,,把设备可靠性和制造系统重构关联起来并实现联合决策,借鉴传统的制造系统设备布局方法,采用设施模块空间移动与制造资源中的制造设备集合、组态参数、工艺工序等信息流相结合,提出了一种可重构制造系统组态重构优化方法,引入了可重构制造系统复杂度、系统响应度参数,在对制造系统布局进行研究和分析基础上,结合制造业的实际水平,从自动化机床等设备的模块化管理入手,分析了物料搬运距离、物流运输成本、设备生产能力、设备可靠度、系统复杂性、系统快速响应等制造系统组态重构的重要影响因素,利用信息熵理论、快速响应原理、整数线性规划、蚁群优化算法、阶序聚类算法等理论与方法,建立了可重构制造系统制造资源优化选择模型,设计了可重构制造系统组态重构优化算法,并给出了可重构制造系统复杂度和响应度的概念和计算方法,为制造系统组态实现动态重构提供了新的思路,探讨了可重构制造系统组态重构、生产率和成本的统一,也为企业实现设备合理的重构布局与快速响应市场需求提供了方法选项。
[Abstract]:In the face of the rapid market changes and the increasing degree of product customization, the manufacturing industry is faced with the enormous challenge of how to respond quickly to the market demand. The traditional rigid automatic production line can improve the efficiency through mass production. Although flexible manufacturing system can shorten the production cycle of the product, but the investment is too large and the capital recovery period is too long, therefore, Reconfigurable manufacturing system (RMS), a new manufacturing system which combines the characteristics of mass production and flexible manufacturing system (FMS), has emerged as the times require. The selection and layout optimization of equipment, the reliability of equipment and system, the quantity of in-process cache and its optimization are the key technologies in the design and reconfiguration of reconfigurable manufacturing system. In this paper, the reconfiguration optimization of reconfigurable manufacturing system will be studied from these aspects. Configuration reconfiguration of reconfigurable manufacturing system is further analyzed and discussed on the basis of equipment layout and planning of traditional manufacturing system. The reasonable placement of all kinds of equipment, such as logistics handling equipment, under certain constraint conditions, and the quantity of manufacturing equipment, the capacity of equipment, the reliability of equipment state, the load of equipment, Due to the influence of the quantity of in-process cache and the processing process, the dynamic of production and the complexity of market demand have more emphasis on the reconfiguration of reconfigurable manufacturing system. In this paper, the reconfiguration characteristics of reconfigurable manufacturing system are studied, and the relationships among reconfigurable manufacturing system configuration, in-process cache and equipment reliability are discussed. The reliability of equipment in reliability engineering is introduced into configuration reconfiguration of manufacturing system. By associating equipment reliability with manufacturing system reconfiguration and realizing joint decision, referring to the traditional equipment layout method of manufacturing system, adopting the assembly of manufacturing equipment in the space of facility module and manufacturing resources, configuration parameters, A reconfigurable manufacturing system configuration reconfiguration optimization method is proposed by combining process information flow. The complexity of reconfigurable manufacturing system and system responsivity parameters are introduced. Based on the research and analysis of manufacturing system layout, the reconfigurable manufacturing system configuration optimization method is proposed. Combined with the actual level of manufacturing industry, starting with the modular management of equipment such as automatic machine tools, this paper analyzes the material handling distance, logistics transportation cost, equipment production capacity, equipment reliability, system complexity, etc. Based on the theory and methods of information entropy theory, fast response principle, integer linear programming, ant colony optimization algorithm, order clustering algorithm, and so on, the system rapid response and other important factors affecting configuration reconfiguration of manufacturing system, such as information entropy theory, fast response principle, ant colony optimization algorithm, order clustering algorithm, etc. The optimal selection model of manufacturing resources for reconfigurable manufacturing system is established. The algorithm of reconfigurable manufacturing system configuration reconfiguration optimization is designed. The concepts and calculation methods of complexity and responsiveness of reconfigurable manufacturing system are given. This paper provides a new idea for dynamic reconfiguration of manufacturing system configuration, and discusses the unification of configuration reconfiguration, productivity and cost of reconfigurable manufacturing system. It also provides the method option for the enterprise to realize the reasonable reconfiguration layout of the equipment and the quick response to the market demand.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH165
【参考文献】
相关期刊论文 前10条
1 吴宝中;龚京忠;李国喜;郭米娜;;面向工序能力的制造装备重构[J];国防科技大学学报;2007年01期
2 盛伯浩 ,罗振璧 ,俞圣梅 ,赵晓波 ,赵宏林 ,张建民 ,张文河;快速重组制造系统的构建原理及其应用[J];工业工程与管理;2001年01期
3 林亚福;杨将新;楼洪梁;吴昭同;;可重构制造系统的组态设计研究[J];机床与液压;2006年06期
4 周海荣;王少华;张令;高琪;;基于可靠性的连续生产在制品库存的建模分析[J];机床与液压;2011年09期
5 冷晟;魏孝斌;王宁生;张文艺;;虚拟制造单元重构中资源选择问题研究[J];计算机集成制造系统;2006年11期
6 金哲;宋执环;杨将新;;可重构制造系统工艺路线与系统布局设计研究[J];计算机集成制造系统;2007年01期
7 宋士刚;李爱平;徐立云;;可重组制造系统缓冲区容量的优化研究[J];计算机集成制造系统;2008年10期
8 周春宏;姚振强;;可重构制造:模式、系统及关键技术[J];机械设计与研究;2006年02期
9 刘阶萍,陈禹六,罗振璧,盛伯浩;敏捷化可重组制造系统及其布局原则和方法研究[J];制造业自动化;2002年12期
10 任思成,徐德,王芳,谭民;可重构制造系统研究与发展[J];制造业自动化;2005年03期
相关博士学位论文 前1条
1 姜晓鹏;可重构制造系统性能综合评价研究[D];西北工业大学;2007年
相关硕士学位论文 前3条
1 李婷婷;面向快速响应的模块化制造关键技术研究[D];国防科学技术大学;2006年
2 陈彦飞;可重构制造系统设备布局规划技术研究[D];北京交通大学;2009年
3 黄辉祥;可重构制造系统的关键技术研究[D];兰州理工大学;2010年
本文编号:1953042
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1953042.html