离心泵转子动平衡技术的研究与应用
发布时间:2018-07-01 20:37
本文选题:振动 + 离心泵 ; 参考:《太原理工大学》2012年硕士论文
【摘要】:离心泵是食品冶金、能源动力和石油化工等诸多领域中广泛使用的一种流体输送机械,随着现代工业生产力的不断发展,离心泵的转速和精密度要求也日趋提高,由此带来的振动问题一直是人们关注的重点。振动是离心泵的一种高发故障形式,其产生的主要原因是转子系统质心发生了偏移,而想要消除这种振动,就需要改变转子系统的质量分布,也即是我们所说的转子平衡。 本文首先对离心泵结构与工作原理进行了研究,并对其产生振动的原因和机理进行了分析;另一方面着重对离心泵转子平衡技术的原理进行了深入研究,给出了转子平衡技术的一些基础定义和平衡精度等级等具体平衡操作中的概念,并对实现转子动平衡的操作技术进行了探讨;最后本文以离心泵转子按支撑形式分为悬臂式离心泵和与其对应的双支撑式离心泵两种为例,对每种支撑形式的转子按其不同的结构进行了转子动平衡技术的试验研究。 通过理论和试验研究,本文得出的主要结论如下: 一、离心泵由于本身构造和工作使用原理产生不平衡的原因归纳起来主要有两大方面:一方面是物料对叶轮长时间的冲击、冲刷以及浸泡导致的叶轮局部变形、表面磨损以及腐蚀而引发的转子质心偏移,此种原因只能够依靠转子动平衡来进行校正以保证其正常工作;另一方面则是在制造过程中产生的如铸造缺陷、叶轮对心程度不够等,此种原因在一定程度上可以依靠提高制造精度优化设计来降低,但是在各部件组装后还是需要进行动平衡校正才能投入工作。 二、基于转子的校正面与支撑之间的位置关系,离心泵转子分为悬臂式和与之对应的双支撑式,由于转子的结构形式不同,所选择的校正方案也不同。 1、悬臂式离心泵转子系统只有一个或者两个叶轮,如果不是叶轮特别厚或者转子不平衡量特别小,通常情况都要考虑对轮系进行辅助动平衡校正。 叶轮校正面校正手段主要是磨削,单级时如果不平衡量非常大而叶轮流道又比较宽,则可以考虑在流道内焊接加重;两级时除非转子的不平衡量非常大,才会考虑进行焊接加重,否则校正手段只选取磨削去重。 对轮校正面手段就比较多样,如果不平衡量非常小,可以在对轮内侧非配合面上进行少量磨削;如果不平衡量非常大则优先考虑在轮毂上进行焊接加重;其余的情况通常选择在轮毂上钻孔这一手段。 2、双支撑式离心泵转子级数通常较多,因此校正面大多选择在叶轮上。 当该类转子只有一个叶轮时,除非不平衡量非常大,才会考虑到焊接加重,一般都选择在叶轮的两侧磨削去重;当该类转子有两个叶轮时,各选取一个作为校正面,校正手段主要是磨削,尽量不使用焊接加重,一些有条件的叶轮可以考虑钻孔去重;当叶轮数量超过两个时,要尽量选取远离中心的叶轮作为校正面,并可选取多个叶轮将不平衡量平均分解,校正手段大多采取磨削去重。 通过具体的试验研究,将不同类型转子的平衡方案进行了分类,为进一步完善动平衡校正过程提供了一定的参考依据。
[Abstract]:Centrifugal pump is widely used in many fields , such as food metallurgy , energy power and petrochemical industry . With the development of modern industrial productivity , the rotating speed and precision of centrifugal pump are becoming more and more important . The vibration problem has been the focus of attention . Vibration is a kind of high failure form of centrifugal pump . The main reason is that the center of mass of the rotor system is shifted , and it is necessary to change the mass distribution of the rotor system , that is to say , the rotor balance .
In this paper , the structure and working principle of centrifugal pump are studied firstly , and the reason and mechanism of vibration are analyzed .
On the other hand , the principle of rotor balance technology of centrifugal pump is studied deeply , some basic definition of rotor balance technology and the concept of balance operation are given , and the operation technology of rotor dynamic balance is discussed .
In the end , the centrifugal pump rotor is divided into cantilever type centrifugal pump and its corresponding double support centrifugal pump , and the rotor dynamic balance technology is tested according to its different structure .
Through theoretical and experimental studies , the main conclusions are as follows :
1 . There are two main reasons for the unbalance of centrifugal pump due to its own structure and working principle : on the one hand , there are two main aspects : the impact of material on the long - term impact of the impeller , the erosion of the impeller , the partial deformation of the impeller caused by the soaking , the wear of the surface and the deviation of the center of mass of the rotor caused by corrosion , which can only be corrected by the dynamic balance of the rotor to ensure its normal operation ;
On the other hand , in the manufacturing process , such as casting defects , insufficient impeller centering degree , etc . , the reason can be reduced to some extent by improving the manufacturing accuracy optimization design , but after each component is assembled , dynamic balance correction is required to be put into operation .
secondly , based on the positional relationship between the front surface of the rotor and the support , the centrifugal pump rotor is divided into a cantilever type and a double support type corresponding to the cantilever type , and the selected correction scheme is different due to the different structural form of the rotor .
1 . There are only one or two impellers in the rotor system of the cantilever type centrifugal pump . If the impeller is not particularly thick or the unbalance amount of the rotor is small , the auxiliary dynamic balance correction of the wheel train shall be considered .
The correction means of the front surface of the impeller is mainly the grinding and the single stage , if the unbalance amount is very large and the blade rotation way is wider , the welding emphasis in the flow channel can be considered ;
2 . The number of rotor stages of the double - supported centrifugal pump is usually more , so the front face is mostly selected on the impeller .
if that unbalance amount is very small , a small amount of grinding can be carried out on the non - mating surface on the inner side of the wheel ;
If the unbalance is very large , priority is given to the welding emphasis on the hub ;
The rest is usually a means of drilling on the hub .
If the unbalance of the rotor is very large at the two stages , the welding is aggravated , otherwise the correction means only selects the grinding de - emphasis .
When there is only one impeller in this type of rotor , unless the unbalance is measured very large , the welding emphasis will be taken into account , and it is generally chosen to grind the rotor on both sides of the impeller ;
When the rotor has two impellers , one is selected as the correction surface , the correction method is mainly grinding , the welding emphasis is not used as much as possible , and some qualified impellers can take into account the weight of the drilling hole ;
When the number of impellers exceeds two , the impeller far away from the center shall be selected as the front face of the correction , and multiple impellers shall be selected to measure the average decomposition of the unbalance , and most of the correction means adopt grinding to remove weight .
Through the concrete experiment research , the balancing scheme of different types of rotors is classified , and a certain reference basis is provided for further improving the dynamic balance correction process .
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH311
【参考文献】
相关期刊论文 前10条
1 伍良生;贺江波;张云禧;李智慧;;高速主轴在线动平衡机构驱动器设计[J];北京工业大学学报;2007年12期
2 曹晰;陈立芳;高金吉;;用于转子自动平衡的双盘电磁型平衡头移动控制方法研究[J];北京化工大学学报(自然科学版);2010年04期
3 于鸣;贺淑君;;400MW燃气轮发电机转子动平衡试验方法[J];东方电机;2009年01期
4 赵海廷;赵彦铭;;采用低速动平衡解决汽轮发电机的一阶临界异常振动[J];发电设备;2009年01期
5 徐平,周保堂,贺世正;整机和在线动平衡技术的现状[J];化工装备技术;1995年01期
6 王毅;;精密离心机的一种现场动平衡方法[J];航空精密制造技术;2008年03期
7 姜占平;唐一科;;高精度现场动平衡智能测试系统的开发与研究[J];机床与液压;2010年01期
8 陈爱萍,张志新;风机现场整机动平衡仪的开发与应用[J];机电工程;2005年06期
9 刘亮;张波;汪林海;;现场动平衡仪的放大系统研究[J];机电工程;2009年05期
10 赵勇;傅惠南;;基于磨削的在线动平衡系统的研究[J];机电工程技术;2008年10期
相关硕士学位论文 前2条
1 俞谢斌;硬支承刚性转子现场动平衡测试系统的研究[D];浙江大学;2006年
2 金鑫;超高速动平衡测试系统的研制[D];沈阳理工大学;2009年
,本文编号:2089086
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2089086.html