粗糙集神经网络在注水泵机组故障诊断中的研究
[Abstract]:At present, computer intelligence has been widely used in fault diagnosis. Rough set theory is a mathematical tool for studying imprecise knowledge and incomplete data representation, learning and induction, which is proposed by Z.Pawlak, a Polish professor. Artificial neural network (Ann) is a nonlinear dynamic system that simulates human thinking. It has the ability of parallel cooperative processing and learning. It can realize the functions of recognition and classification, optimization calculation, associative memory, knowledge processing and so on. The vibration data of the water injection pump unit contain a lot of information about the working state of the water injection pump unit, and it is an important data for the fault diagnosis of the water injection pump unit. In this paper, the ability of attribute reduction, knowledge processing and neural network for learning, classification and parallel processing of rough set is used to establish rough set neural network to complete fault diagnosis of water injection pump unit. In this paper, the research results of rough set and neural network are combined. Firstly, rough set theory is used to effectively reduce the dimension of the sample feature, then the network is constructed by using the reduced sample to reduce the learning and running time of the neural network. Finally, the fault diagnosis system of water injection pump unit is built by MATLAB software. The results of network diagnosis show that the simulation results are in agreement with the actual situation for the sample knowledge that has been learned, which shows that the network can correctly diagnose the faults. The research of rough set neural network in fault diagnosis of water injection pump unit has certain theoretical significance and practical value.
【学位授予单位】:西安石油大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH165.3;TP183
【参考文献】
相关期刊论文 前10条
1 吴国新,许宝杰,朱春梅;基于LabVIEW的虚拟振动测试系统[J];北京机械工业学院学报;2000年04期
2 徐秀芬;殷海双;侯永强;宗强;;基于虚拟仪器的油田注水泵机组故障诊断系统[J];大庆石油学院学报;2009年03期
3 高金吉;机泵群实时监测网络和故障诊断专家系统[J];中国工程科学;2001年09期
4 杨迎化,唐大全,卢建华;神经网络在智能故障诊断技术中的应用及其发展趋势[J];测控技术;2003年09期
5 张宏,刘明尧;注水泵机组的状态监测与故障诊断分析[J];石油天然气学报(江汉石油学院学报);2005年S3期
6 王晓蓉;李远兵;张三辉;翟风娜;白方方;;PCP自控技术在中原油田离心注水泵站的应用[J];科技情报开发与经济;2010年21期
7 殷海双;王永安;齐元俊;;基于LabVIEW的油田注水泵状态监测系统[J];科学技术与工程;2010年09期
8 王翔,李伯全;机械产品智能化故障诊断技术研究现状与展望[J];机械;2002年02期
9 张江林;张敦辉;;高压注水泵的使用现状及管理意见[J];江汉石油科技;2008年04期
10 李开连,尚小宁,王宏庆;注输设备的状态监测及故障诊断[J];中国设备管理;1999年04期
相关硕士学位论文 前3条
1 曾建武;粗糙集理论及故障诊断应用研究[D];浙江大学;2006年
2 张新庆;便携式振动监测系统的研制及其在油田注水泵的应用[D];上海交通大学;2007年
3 殷海双;注水泵工况诊断监测系统研究[D];大庆石油学院;2009年
,本文编号:2129845
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2129845.html