磁力弹簧式共振型压电气泵研究
[Abstract]:Gas diaphragm pump is a small type of fluid pump. It has been widely used in medicine, biology, fine chemical industry, aerospace, MEMS and other fields in recent years.
At present, there are two main types of gas diaphragm pumps in the market, such as electromagnetic diaphragm pump driven by motor cam mechanism and piezoelectric diaphragm pump driven by piezoelectric vibrators. In practical application, the electromagnetic diaphragm pump will have problems such as complex structure, high cost and large noise, while the piezoelectric diaphragm pump has low volume change rate and a piezoelectric vibrator. Heat, fragility, depolarization, and other problems.
In this paper, based on the study of the design theory and key technology of the piezoelectric gas diaphragm pump, the National Natural Science Foundation of China (project number: 50735002), the magnetic spring is first applied to the structural resonance pump, and the related theoretical and technical problems are studied.
The advantage of applying the magnetic spring to the study of the resonant gas pump is that it can increase the volume change rate of the pump body, simplify the structure of the system, reduce the noise and increase the reliability and stability of the system. The most important thing is that the stiffness of the mechanical system can be changed by adjusting the axial gap of the magnetic spring, and then it is very convenient to adjust the whole system. The resonance frequency of a mechanical system.
The piezoelectric vibrator is the core component of the magnetic spring resonance pump, which provides the excitation for the whole resonance system. The piezoelectric vibrator used in this paper is a ring piezoelectric ceramic and a ring substrate which is bonded with epoxy resin. The piezoelectric vibrator is used as part of the resonant pump of the magnetic spring pump, and it is simulated by the modal analysis of the vibrator. The final structural parameters of the piezoelectric vibrator are determined by response analysis.
The axial force of the magnetic spring is theoretically derived from the magnetic charge viewpoint, and the relation between the axial force and the axial distance of the magnetic spring is calculated by the method of discrete summation and MATLAB programming by dividing the cell. Then the relation formula is obtained by the curve fitting method, and the axial stiffness and the axial interval of the magnetic spring are obtained. The axial force of the magnetic spring is measured by the design test, and the relationship between the axial stiffness and the axial force is also obtained by using the method of fitting the fitting curve.
The working principle of the magnetic spring type resonant gas pump is introduced, the working principle of the resonance body is analyzed qualitatively and the effect of the magnetic spring on the whole vibrator is analyzed. The main components are designed, the dynamic model of the part of the vibrator is established, and the factors affecting the displacement of the excited vibration body are obtained; the stiffness of the main components is carried out. The resonance frequency of the vibrator and the displacement of the excited vibrator are measured by the precision impedance analyzer and the laser micrometer. The relationship between the resonance frequency of the excited vibrator and the axial spacing of the magnetic spring is obtained, and the displacement of the central point of the piezoelectric vibrator is compared, and the displacement magnification of the resonant pump vibrator is obtained.
The basic structure and working process of the magnetic spring type resonant pump body are introduced in detail. The diaphragm theory is used to optimize the diaphragm of the pump body, and the structural parameters of the diaphragm are determined. The effect of the volume change rate of the cavity, the flow state and the lag of the valve on the performance of the pump is analyzed in detail, and the test device is designed and measured. Based on the test results, the valve plugging diameter, the width of the cantilever, the height of the chamber and the pretightening height of the valve seat are selected, and the optimum structural parameters of the resonance pump body are finally determined.
The cause of the torsion of the piezoelectric vibrator in the vertical direction is analyzed. Because of the existence of the machining error, the axial stiffness of the magnetic spring in the resonant pump is not quite consistent with the theoretical calculation. The two magnet of the magnetic spring is not completely concentric in the axial direction, which will produce an extra one on the basis of only one axial force in the original. The radial force, the radial force and the axial force will produce the torque to the piezoelectric vibrator connected with the suspension magnet. With the decrease of the axial gap, the radial force becomes larger and the two ring magnet is more and more eccentricity. Therefore, the actual axial stiffness of the magnetic spring is smaller than the theoretical calculation, and the radial stiffness will increase.
The key to the success of the magnetic spring resonance pump lies in the control of the axial stiffness of the magnetic spring, increasing the excitation of the piezoelectric vibrator and improving the utilization efficiency of the piezoelectric vibrator. The control of the axial stiffness of the magnetic spring can draw on the research results obtained by the magnetic levitation train and the magnetic bearing, and the key to increase the excitation of the piezoelectric vibrator is to find out. The piezoelectric ceramics with high quality parameters are made to make the piezoelectric vibrator, and the efficiency of the excitation of the high voltage vibrator must be realized by improving the structure design of the resonant pump.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH38
【相似文献】
相关期刊论文 前10条
1 郭志军,李鲲,杨兴玉,卿荣康;一种具有自检功能的压电角速率陀螺[J];压电与声光;1995年02期
2 董蜀湘,霍玉晶,王树昕,邱海波;压电微马达控制的激光谐振腔调节器[J];大连理工大学学报;1997年S2期
3 金江,陶宝祺;压电自适应层合板的有限元法分析[J];南京航空航天大学学报;1997年02期
4 张学成;压电致动器双向电源研究[J];压电与声光;1998年01期
5 李国顺;低伏特值的稳压电路[J];电气时代;2000年12期
6 王斌;一种新型数控高压电源[J];世界产品与技术;2000年06期
7 彭太江,常颖,杨志刚,吴博达;超声减摩用压电换能器阻抗匹配的试验研究[J];压电与声光;2004年01期
8 ;液静压电主轴试验小结[J];轴承;1976年01期
9 翁台蒙,杨建军,叶慧,孙昌年;用于弱光光谱测量的压电扫描F—P干涉仪系统[J];光学学报;1986年11期
10 王晓慧,袁哲俊;两种压电陶瓷微位移器的特性分析与实验对比[J];压电与声光;1994年01期
相关会议论文 前10条
1 刘军考;郁朋;陈维山;盛明伟;;高粘度压电微喷系统的研究[A];2011年机械电子学学术会议论文集[C];2011年
2 毛崎波;;通过压电分流阻尼技术抑制结构振动的实验研究[A];第十届全国振动理论及应用学术会议论文集(2011)上册[C];2011年
3 丁皓江;徐荣桥;;压电扇形环板的自由振动[A];钱学森技术科学思想与力学论文集[C];2001年
4 李全禄;;两种新型压电集成器件的初试[A];中国声学学会2002年全国声学学术会议论文集[C];2002年
5 冯永平;邓明香;;周期复合材料压电均匀化常数的数值模拟[A];数学·力学·物理学·高新技术交叉研究进展——2010(13)卷[C];2010年
6 董跃清;晏雄;;基于压电导电原理的减振复合材料[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
7 樊尚春;秦杰;刘广玉;;小型压电激励振动筒压力传感器[A];压力计量服务和测试技术研讨会论文集[C];2003年
8 殷学纲;李宾;黄尚廉;;点式压电智能板的振动主动控制[A];“力学2000”学术大会论文集[C];2000年
9 富东慧;侯振德;秦庆华;卢晨霞;;骨裂纹尖端压电研究[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
10 王云;徐荣桥;丁皓江;;功能梯度压电圆板的轴对称弯曲[A];中国力学学会学术大会'2009论文摘要集[C];2009年
相关重要报纸文章 前10条
1 田学科;从网络上监控各地电网[N];科技日报;2004年
2 记者 冯竞;重庆大学制出新型压电生物芯片[N];科技日报;2001年
3 姚学文 李璀 叶乐;姚守拙:压电液相振荡理论的开拓者[N];湖南经济报;2006年
4 山东 宗加春;24V供电的汽车收放机降压电路[N];电子报;2002年
5 记者王华楠;我国研发成功压电精密驱动技术[N];中国技术市场报;2010年
6 赵慧 林妙法;国内首套船用高压电动空压机站通过验收[N];中国船舶报;2005年
7 冯继文 编译;压电能源闪光灯[N];电子报;2009年
8 山东 宗加春;24V供电汽车收放机的降压电路[N];电子报;2003年
9 广东 徐小平;电容降压的降压电容器参数计算[N];电子报;2004年
10 ;德尔福直接驱动压电喷油器技术量产[N];国际商报;2008年
相关博士学位论文 前10条
1 富东慧;骨压电电压信号特征的实验研究[D];天津大学;2008年
2 郑鹏;钛酸钡基陶瓷的压电物性与钛酸铜钙陶瓷的高介电物性[D];山东大学;2010年
3 孙恩伟;铌锌酸铅—钛酸铅和铌镁铟酸铅—钛酸铅单晶的物性研究[D];哈尔滨工业大学;2011年
4 高长银;压电石英晶片扭转效应研究及新型扭矩传感器的研制[D];大连理工大学;2004年
5 李向阳;层状压电/弹光复合材料电光效应研究[D];南京师范大学;2011年
6 杜设亮;精密机械仿生热稳定构件研究[D];浙江大学;2001年
7 张波;压电石英晶体凝血分析及微阵列免疫传感器的实验研究[D];第三军医大学;2002年
8 张进忠;压电体声波微生物传感及其应用研究[D];湖南大学;2001年
9 朱满康;BaO-TiO_2-SiO_2系极性玻璃陶瓷及其薄膜研究[D];北京工业大学;2005年
10 许立宁;基于MEMS技术的压电微喷的研制[D];中国科学院研究生院(电子学研究所);2005年
相关硕士学位论文 前10条
1 肖春霞;基于Internet和组件技术的压电有限元分析系统[D];南京航空航天大学;2004年
2 孙浩;压电分流电路特性及在结构振动控制中的应用研究[D];西北工业大学;2005年
3 池望青;无线传感器网络自适应压电能量获取的研究[D];电子科技大学;2010年
4 李军;智能压电摩擦阻尼器的控制理论与试验研究[D];大连理工大学;2005年
5 崔海涛;压电智能悬臂梁的被动与主动振动控制研究[D];西北工业大学;2004年
6 武文良;薄膜电子式及压电智能式电气转换器控制系统的研制[D];大连理工大学;2003年
7 张海峰;基于神经网络的压电智能结构控制方法研究[D];西北工业大学;2001年
8 黄志奇;压电微位移驱动器的结构设计与仿真[D];电子科技大学;2004年
9 刘锋伟;压电生物传感器及其采集分析系统的研究[D];重庆大学;2004年
10 周文委;结构混凝土压电机敏监测技术的基础研究[D];重庆大学;2003年
本文编号:2134926
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2134926.html