当前位置:主页 > 科技论文 > 机械论文 >

少齿差行星减速器动态特性分析及非线性振动研究

发布时间:2018-07-29 06:04
【摘要】:课题来源于国防科工委“十一五”民用航天预研项目—“空间环境下的高性能摩擦副与高效传动机构技术”(C4220061319)、国家教育部“长江学者和创新团队发展计划”项目—“高性能机电传动系统的创新设计理论、方法与技术”(IRT0763)、国家自然科学基金重点项目—“新型高性能传动件及系统的可靠性设计理论与方法”(50735008)。 减速器系统的工作状态极其复杂,不仅载荷工况和动力装置多样,且对于齿轮传动系统,由于时变啮合刚度、传动误差、齿侧间隙等因素的影响,引起轮齿接触 脱离 接触周期性、强非线性耦合振动,对传动系统的平稳性、可靠性产生严重影响。因此对其进行动态特性、间隙非线性振动行为及影响因素的研究,为高性能齿轮系统的设计、分析、制造提供了一定的理论依据与实验参考。 论文以NN型少齿差行星减速器为对象,,先分析其结构及传动原理,用有限元法分析其固有频率及模态振型,用集中质量法建立减速器系统非线性振动模型与方程,通过数值求解分析减速器非线性振动特性以及参数对它的影响。最后对其模态特性和振动响应进行实验研究。 论文主要研究内容如下: (1)分析该减速器的结构、传动原理,计算某常见工况下各传动件的理论转速。求得两级传动的理论啮合频率、啮合阻尼。详细分析各滚动轴承的变形、刚度、阻尼等动特性参数。 (2)推导内齿副单齿刚度计算式,考虑理论重合度,计算多对齿啮合刚度。将两级传动多对齿时变啮合刚度拟合为8阶Fourier级数的形式。分别以各级传动啮合角频率为角速度的正弦函数模拟各级齿轮误差。 (3)采用ABAQUS建立该减速器有限元自由模态分析模型,其中轮齿啮合部位采用绑定约束,用弹簧单元模拟轴承。采用Lanczos特征值求解器对该减速器进行自由模态求解,获得该减速器前20阶固有频率及模态振型。 (4)综合考虑齿轮啮合刚度、传动误差、齿侧间隙及支撑刚度和阻尼,用集中质量法建立多自由度、多间隙、变参数、弯 扭耦合的两级齿轮系统非线性振动模型,用Lagrange方程推导齿轮系统的非线性振动微分方程组。用四阶五级的RKF法对非线性微分方程组求解,系统地分析该减速器各齿轮振动位移、速度响应,以及振动位移 速度相图、Poincaré截面。进一步计算得齿轮弹粘啮合力、轴承动载荷、振动加速度响应。最后分析各参数对减速器非线性振动特性的影响。 (5)用LMS Test. Lab对该减速器进行锤击法自由模态实验,验证理论分析结果的正确性。用三向加速度传感器采集减速器壳体振动信号,由FFT变换得到相应的振动频率,经1/3倍频处理分析振动加速度级结构噪声,经积分处理得到振动速度及位移响应。
[Abstract]:The subject comes from the "11th Five-Year" Civil Aerospace Pre-Research Program of the National Commission for National Defense Science, Technology of High-Performance friction pairs and High-efficiency Transmission mechanisms in Space Environment (C4220061319), and the National Ministry of Education "Yangtze River Scholars and Innovation team Development Plan" -"innovative design theory for high performance electromechanical transmission systems, Methods and techniques "(IRT0763), key item of National Natural Science Foundation -" Theory and method of Reliability Design for New High performance Transmission parts and Systems "(50735008). The working state of the reducer system is extremely complex, not only the load working conditions and power devices are various, but also the gear transmission system is affected by the time-varying meshing stiffness, transmission error, tooth side clearance and so on. The gear tooth contact is caused by the periodic and strong nonlinear coupling vibration, which has a serious effect on the stability and reliability of the transmission system. Therefore, the study of the dynamic characteristics, the nonlinear vibration behavior of clearance and the influencing factors provide a certain theoretical basis and experimental reference for the design, analysis and manufacture of high performance gear system. In this paper, the structure and transmission principle of NN type planetary reducer with less tooth difference are analyzed, its natural frequency and modal mode are analyzed by finite element method, and the nonlinear vibration model and equation of reducer system are established by means of lumped mass method. The nonlinear vibration characteristics of reducer and the influence of parameters on it are analyzed numerically. Finally, the modal characteristics and vibration response are studied experimentally. The main contents of this paper are as follows: (1) the structure and driving principle of the reducer are analyzed. The theoretical meshing frequency and meshing damping of the two-stage transmission are obtained. The parameters of deformation, stiffness and damping of rolling bearings are analyzed in detail. (2) the calculation formula of single tooth stiffness of internal gear pair is derived, and the meshing stiffness of multiple pairs of teeth is calculated considering the degree of theoretical coincidence. The time-varying meshing stiffness of multi-pair teeth of two-stage transmission is fitted to the form of eighth order Fourier series. The sinusoidal function with the angular frequency of meshing angle of each transmission is used to simulate the errors of gear at all levels. (3) the finite element free modal analysis model of the reducer is established by using ABAQUS, in which the gear tooth meshing part is bound constrained. Use spring element to simulate bearing. The Lanczos eigenvalue solver is used to solve the free mode of the reducer, and the first 20 natural frequencies and modal modes of the reducer are obtained. (4) the gear meshing stiffness, transmission error, tooth side clearance and support stiffness and damping are considered synthetically. The nonlinear vibration model of a two-stage gear system with multiple degrees of freedom, multiple clearances, variable parameters and coupled bending and torsion is established by means of the lumped mass method. The nonlinear vibration differential equations of the gear system are derived by using the Lagrange equation. The fourth order five-stage RKF method is used to solve the nonlinear differential equations. The vibration displacement, velocity response and velocity phase diagram of each gear in the reducer are systematically analyzed. The gear elastic engagement force, bearing dynamic load and vibration acceleration response are further calculated. Finally, the influence of the parameters on the nonlinear vibration characteristics of the reducer is analyzed. (5) LMS Test is used. The free mode experiment of hammering method is carried out by Lab to verify the correctness of the theoretical analysis. The vibration signal of the reducer shell is collected by three direction acceleration sensor and the corresponding vibration frequency is obtained by FFT transform. The structural noise of vibration acceleration level is analyzed by 1 / 3 frequency doubling processing, and the vibration velocity and displacement response are obtained by integral processing.
【学位授予单位】:重庆大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:TH132.46

【相似文献】

相关期刊论文 前10条

1 李杰;项昌乐;;履带车辆齿轮传动系统非线性振动特性研究[J];现代制造工程;2007年06期

2 柴山,高连勇;用积分法计算直齿轮轮齿的弹性变形[J];机械设计;2005年02期

3 厉海祥;;减速器的速比分配[J];矿山机械;1983年01期

4 钟有学;纪云峰;;关于游梁式抽油机改用链条减速器的探讨(摘要)[J];吉林大学学报(工学版);1983年01期

5 苗佩军;孙波;;矿用减速器齿轮破坏原因及预防措施[J];科技信息(科学教研);2008年23期

6 倪德忠;方便减速器齿轮翻面检修的设计[J];矿山机械;1999年11期

7 刘道华;靳军;徐建忠;申文军;;磨机减速器齿轮损坏原因及解决[J];水泥;2009年10期

8 鲍子强;;二级圆柱斜齿轮减速器的优化设计[J];机械设计与制造;1988年05期

9 韩常俊;ZG-90减速器齿轮更换工艺CAD[J];矿山机械;1994年03期

10 成建强;;后桥减速器噪声振动控制的工艺方法与分析[J];现代零部件;2011年08期

相关会议论文 前10条

1 彭志科;;Volterra级数及其在非线性振动研究中的应用[A];第四届全国动力学与控制青年学者研讨会论文摘要集[C];2010年

2 闻邦椿;;非线性振动的工程应用[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文集[C];2007年

3 许茂;莫军;赵荣国;;浅析分段线性阻尼系统的非线性振动[A];第八届全国振动理论及应用学术会议论文集摘要[C];2003年

4 张涛;刘土光;李天匀;孙江龙;;加筋板非线性振动及稳定性分析[A];2004年船舶与海洋工程学术研讨会论文集[C];2004年

5 陈立群;;轴向运动黏弹性梁的横向非线性振动[A];第二届全国动力学与控制青年学者研讨会论文摘要集[C];2008年

6 孙麟;张伟;曹东兴;姚明辉;;可变形机翼非线性振动的理论研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年

7 郑鹭杰;陈伟中;;非线性MaxweⅡ模型在包膜气泡动力学中的应用[A];2008年全国声学学术会议论文集[C];2008年

8 黄坤;冯奇;;悬索桥的非线性振动[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年

9 李海峰;何铁宁;李映辉;;软夹层梁的非线性振动[A];第十二届现代数学和力学会议论文集[C];2010年

10 邱家俊;李文兰;;发电机组定子系统磁固耦合非线性振动[A];“力学2000”学术大会论文集[C];2000年

相关重要报纸文章 前10条

1 本报特约记者  胡宏伟;愿借好风上青云[N];大众科技报;2006年

2 向畅;张伟:在重大工程中探寻非线性动力学[N];光明日报;2007年

3 胡宏伟;在自主创新的征途上驰骋[N];中国知识产权报;2006年

4 闫瑾 赵s

本文编号:2151764


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2151764.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b005a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com