基于振动信号分析的往复式压缩机状态监测与评估技术
[Abstract]:Reciprocating machinery is widely used in many fields, such as industry, agriculture, transportation, national defense and scientific research. It has the characteristics of complex structure and many incentive sources. In actual production, once failure occurs, it will not only affect the process of industrial production. Cause huge loss, also can bring a series of safety problems. Therefore, in order to ensure the safe operation of the unit, production enterprises urgently need a set of economic and reliable reciprocating compressor fault diagnosis system for early prediction, monitoring and diagnosis of compressor faults. The condition detection and evaluation of mechanical equipment is the science of identifying the operating state of the equipment. The object of its research is the reflection of the change of the running state of the machine or the unit in the diagnosis information. The research content includes the monitoring during the operation of the equipment. The forecast of the development trend of operation and the recognition and diagnosis of operation status. With the rapid development of new theory, new technology and new methods, the state detection and evaluation technology of mechanical equipment has been developed rapidly. This technology has basically formed a discipline system and moved towards a virtuous cycle of development. In this paper, the basic theory and method of mechanical equipment fault diagnosis technology are analyzed, and the development and main problems of compressor fault diagnosis technology are introduced. Secondly, the structure of 2D12 reciprocating compressor is introduced, the mechanism of common faults of its main components is analyzed, and different fault diagnosis methods are used for signal analysis and fault feature extraction for different faults. A fault diagnosis system for reciprocating compressors is established. Finally, this paper makes some attempts in the compressor state prediction, using the Lyapunov exponent prediction model to predict the state trend of reciprocating compressor in the short and medium term, and has achieved good results.
【学位授予单位】:东北石油大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH45;TH165.3
【参考文献】
相关期刊论文 前10条
1 张文明,李莉,申焱华,王英,王卫刚;滚动轴承故障诊断中的分形[J];北京科技大学学报;1996年03期
2 王凤利,马孝江;基于混沌的旋转机械故障诊断[J];大连理工大学学报;2003年05期
3 胡劲松,杨世锡;基于HHT的旋转机械故障诊断方法研究[J];动力工程;2004年06期
4 佟德纯;工程机械诊断技术讲座 第五讲 振动标准与诊断标准的建立[J];工程机械与维修;2001年05期
5 蒋东翔,,黄文虎,徐世昌;分形几何及其在旋转机械故障诊断中的应用[J];哈尔滨工业大学学报;1996年02期
6 朱春梅;徐小力;张建民;;基于混沌时间序列的旋转机械非平稳状态预测方法研究[J];机械设计与制造;2006年12期
7 王江萍,屈梁生,沈玉娣;柴油机故障诊断技术的现状与展望[J];机械科学与技术;1997年05期
8 刘树林,黄文虎,夏松波,陈业生;基于免疫机理的往复压缩机气阀故障检测方法[J];机械工程学报;2004年07期
9 方玉莹;空气压缩机减振的试验研究[J];机械研究与应用;2000年01期
10 刘峻华,黄树红,陆继东;汽轮机故障诊断技术的发展与展望[J];汽轮机技术;2000年01期
相关会议论文 前1条
1 付瑶;王红军;徐小力;;EMD方法与粗糙集结合在机械故障诊断中的应用方法研究[A];第八届全国设备与维修工程学术会议、第十三届全国设备监测与诊断学术会议论文集[C];2008年
相关博士学位论文 前1条
1 苗刚;往复活塞式压缩机关键部件的故障诊断方法研究及应用[D];大连理工大学;2006年
相关硕士学位论文 前3条
1 李稳安;基于混沌时间序列的复杂机械系统故障特征提取与状态预报[D];东南大学;2004年
2 周伽;非经典数学方法在非线性时间序列预测中的应用研究[D];南京航空航天大学;2006年
3 于庆江;分形方法在往复压缩机状态监测与故障诊断上的应用[D];大庆石油学院;2007年
本文编号:2217381
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2217381.html