虚拟维修训练中人机交互的认知负荷研究
[Abstract]:With the application of advanced science and technology, the technical content of various products is increasing day by day, which puts forward higher requirements for the training of maintenance personnel. Virtual maintenance training has become a new research field. This paper introduces the importance of cognitive load theory in virtual maintenance training, and analyzes and studies some characteristics of cognitive load in virtual maintenance training. Firstly, the concept and research background of virtual maintenance training are introduced, and the research status of virtual maintenance training at home and abroad is described in detail. The research direction of this paper is the research of cognitive load in virtual maintenance training. In addition, some basic theoretical knowledge applied in the research mainly includes the content of virtual maintenance training, the cognitive mechanism in virtual maintenance training, the concept of cognitive load, the classification of cognitive load, and the principle of reducing cognitive load. And the basic assessment method of cognitive load. Secondly, on the basis of the principle of reducing cognitive load, the effects of problem completion effect and attention dispersion effect on cognitive load in virtual maintenance training are verified by designing and comparing experiments. Finally, this paper studies the characteristics of cognitive load in virtual maintenance training. Based on the single dimension evaluation index obtained in this part, the cognitive load grade in the virtual maintenance training system is evaluated synthetically by using the probabilistic neural network and competitive neural network in the artificial neural network model. The change characteristics of cognitive load indexes in different working periods during continuous operation were studied. And the probabilistic neural network is used to predict the cognitive load assessment index during continuous training.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP11;TH17;TP391.9
【参考文献】
相关期刊论文 前10条
1 谭继帅;郝建平;王松山;;装备虚拟维修训练研究与发展综述[J];兵工自动化;2007年05期
2 王强;宋建社;曹继平;叶庆;;复杂装备虚拟维修训练技术[J];兵工自动化;2009年12期
3 刘瑞叶;黄磊;;基于动态神经网络的风电场输出功率预测[J];电力系统自动化;2012年11期
4 姚李孝,姚金雄,李宝庆,万诗新;基于竞争分类的神经网络短期电力负荷预测[J];电网技术;2004年10期
5 唐剑岚;周莹;;认知负荷理论及其研究的进展与思考[J];广西师范大学学报(哲学社会科学版);2008年02期
6 马麟;吕川;;虚拟维修技术的探讨[J];计算机辅助设计与图形学学报;2005年12期
7 郑丕谔,马艳华;基于RBF神经网络的股市建模与预测[J];天津大学学报;2000年04期
8 张中波;丰世林;;虚拟维修仿真技术在航空器维修中的应用[J];西安航空技术高等专科学校学报;2010年05期
9 丁道群;罗扬眉;;认知风格和信息呈现方式对学习者认知负荷的影响[J];心理学探新;2009年03期
10 杨宇航,李志忠,郑力;虚拟维修研究综述[J];系统仿真学报;2005年09期
相关博士学位论文 前1条
1 王坛华;基于三维网络模拟技术的裂隙网络水力研究及隧道涌水非线性预测[D];吉林大学;2008年
相关硕士学位论文 前2条
1 雷可君;基于小波包变换与PNN神经网络相结合的指纹识别系统[D];湖南大学;2007年
2 郭亚楠;基于神经网络的软岩巷道变形预测研究[D];河北工程大学;2007年
,本文编号:2275686
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2275686.html