故障轴承振动特性分析与典型故障诊断
[Abstract]:Rolling bearing is one of the mechanical parts which are widely used and easy to be damaged in various rotating machinery. Its running state often directly affects the performance of the whole machine. Reliable fault diagnosis of rolling bearings can find faults in time, and can effectively avoid serious accidents such as machine damage and casualties. Especially in rolling machinery, rolling bearing is a very important part, so it is of practical significance to study the fault diagnosis of rolling bearing. Using the electric spark to destroy the rolling bearing is used to simulate the bearing fault, and the simulation fault is used to replace the actual fault to carry on the experiment research. A rolling bearing fault test platform is set up and vibration signals are collected on the platform for experimental research. In this paper, the fault mechanism and vibration characteristics of rolling bearings are analyzed firstly, and the periodic shock and amplitude modulation characteristics of local damage vibration signals of rolling bearings are summarized. Then, in order to extract the fault feature of rolling bearing effectively, a fault feature extraction method based on the combination of empirical mode decomposition method and independent component analysis method is proposed, which is applied to the practical data processing and analysis of rolling bearing experiment. It is shown that the fault characteristics of rolling bearing can be extracted accurately. Secondly, the theory of support vector machine is studied systematically, and the genetic algorithm based on cross-validation is proposed to optimize the penalty parameter C and Gao Si kernel parameter 纬 in support vector machine, which ensures the optimality of classification model. Finally, the singular value of the separation matrix is used as the fault characteristic vector of rolling bearing. Through the vibration experiment of the rolling bearing and the collection of data, the method is proved to be effective in identifying the fault types. The intelligent fault diagnosis system platform of rolling bearing is developed by means of MATLAB and LabVIEW. The platform has a friendly interface and is easy to operate, and the performance of the diagnosis system is proved to be good by simulating the vibration tests of typical faults of rolling bearings on the rolling bearing test stand.
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH165.3
【参考文献】
相关期刊论文 前10条
1 罗继伟;滚动轴承受力分析及其进展[J];轴承;2001年09期
2 李良敏;基于遗传算法的盲源分离在轴承诊断中的应用[J];轴承;2005年09期
3 盖强,马孝江,张海勇,邹岩];一种消除局域波法中边界效应的新方法[J];大连理工大学学报;2002年01期
4 梁晓刚;张永昌;翟弘泰;;LabVIEW与Matlab混合编程的实现[J];电脑开发与应用;2009年09期
5 胡佑兰;彭天好;朱刘英;;MATLAB和LabVIEW混合编程及在控制系统中的应用[J];机床与液压;2009年10期
6 杨俊;吴建华;;基于支持向量机的异步电机故障诊断系统[J];机电工程;2008年01期
7 于青;赵辉;;基于GA的ε-支持向量机参数优化研究[J];计算机工程与应用;2008年15期
8 刘学胜;;基于PCA和SVM算法的人脸识别[J];计算机与数字工程;2011年07期
9 钟振茂,陈进,钟平;盲源分离技术用于机械故障诊断的研究初探[J];机械科学与技术;2002年02期
10 王兴玲,李占斌;基于网格搜索的支持向量机核函数参数的确定[J];中国海洋大学学报(自然科学版);2005年05期
相关博士学位论文 前6条
1 陈建国;基于独立分量分析的机械故障特征提取及分类方法研究[D];大连理工大学;2011年
2 傅瑜;小波分析在旋转机械故障诊断中的应用[D];西安电子科技大学;1998年
3 陆爽;基于现代信号分析和神经网络的滚动轴承智能诊断技术研究[D];吉林大学;2004年
4 孙晖;经验模态分解理论与应用研究[D];浙江大学;2005年
5 金岩;基于小波变换与独立分量分析的内燃机振声特性研究[D];浙江大学;2007年
6 李强;机械设备早期故障预示中的微弱信号检测技术研究[D];天津大学;2008年
相关硕士学位论文 前1条
1 李公法;基于Internet的轧机在线监测与故障诊断系统[D];武汉科技大学;2004年
本文编号:2433525
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2433525.html