两轴平台稳定系统中MEMS陀螺误差建模与分析
[Abstract]:The platform stability system can isolate the disturbance of the moving carrier to the detection system, monitor the change of attitude and position of the platform in real time, and at the same time apply the reverse torque to compensate the external disturbance, so as to keep the dynamic attitude reference of the detector exactly unchanged. And through the photoelectric detector on the platform to achieve target monitoring or automatic tracking of moving targets. Gyroscope is the core sensitive element in the platform stabilization system, and its measurement precision directly affects the stability precision of the platform. MEMS gyroscope has the advantages of light weight, small volume, low price, low power consumption and high reliability, etc. It is widely used in military equipment and civilian facilities. However, due to the limitation of MEMS gyroscope machining materials in micrometer order and processing level, the measurement accuracy of MEMS gyroscope is still low at home and abroad. Improving the measuring accuracy of MEMS gyroscope is the key to promote the miniaturization of platform stabilization system. In this paper, a MEMS gyroscope signal acquisition system is designed for the two-axis platform stabilization system of micro-miniature photoelectric pods, and a gyro zero adjustment circuit with digital potentiometer as the core is added to the acquisition system. The zero center of gyro is adjusted by real-time control of digital potentiometer output by DSP. The change of ambient temperature is one of the most important factors affecting the measurement accuracy of MEMS gyroscope. Due to the miniaturized size and internal structure of MEMS gyroscope, its performance is sensitive to the variation of ambient temperature. Among them, the temperature change has the greatest influence on the zero-position output and scale factor of gyro. Therefore, this paper designs the full-temperature test experiment to obtain the zero-position characteristic of gyro and the experiment of adjusting digital potentiometer when the zero-position change of gyro is simulated by the power supply, and obtains the zero-position compensation model of gyro. By controlling the digital potentiometer, the zero-bit center can be adjusted. The temperature compensation experiment shows that the zero-position stability precision of gyro in the whole temperature range is greatly improved by the method of full-temperature measurement and digital potentiometer compensation, which has a certain practical value. The rotating speed calibration experiment of gyro at different temperature is designed. Three kinds of scale factor fitting method are adopted. By comparing the residual error of fitting curve, it is concluded that the residual error of rotating speed segment fitting method is the least and the effect is the best. Gyro random drift error is also one of the main sources of gyro measurement error. The time series analysis method is used to model the random drift sampling data of MEMS gyroscope by ARMA. The AR (1) model is determined to be the best error model by the minimum AIC criterion. On the basis of this model, the random drift data is filtered by Kalman filtering method, and the random error of gyro is analyzed by Allan variance before and after filtering. The results show that the Kalman filtering method is effective and feasible in gyro random error filtering.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TN965;TH-39
【参考文献】
相关期刊论文 前10条
1 邹学锋;卢新艳;;基于Allan方差的MEMS陀螺仪性能评价方法[J];微纳电子技术;2010年08期
2 李建利;房建成;盛蔚;;MEMS陀螺标度因数误差分析及分段插值补偿[J];北京航空航天大学学报;2007年09期
3 王新龙;李娜;;MEMS陀螺随机误差的建模与分析[J];北京航空航天大学学报;2012年02期
4 李杰;张文栋;刘俊;;基于时间序列分析的Kalman滤波方法在MEMS陀螺仪随机漂移误差补偿中的应用研究[J];传感技术学报;2006年05期
5 袁赣南;梁海波;何昆鹏;谢燕军;;MEMS陀螺随机漂移的状态空间模型分析及应用[J];传感技术学报;2011年06期
6 蒋庆仙;;关于MEMS惯性传感器的发展及在组合导航中的应用前景[J];测绘通报;2006年09期
7 秦伟;苑伟政;常洪龙;薛亮;;基于模糊逻辑的MEMS陀螺零漂温度补偿技术[J];弹箭与制导学报;2011年06期
8 张晓霞;曹咏弘;;卡尔曼滤波在陀螺漂移时间序列模型中的应用[J];弹箭与制导学报;2012年03期
9 石国祥;陈坚;叶军;王林;;总方差方法在光纤陀螺随机误差分析中的应用[J];光电工程;2012年01期
10 王艳丽;汤楠;霍爱清;孙海东;;旋转导向钻井稳定平台前馈模糊算法研究[J];电子设计工程;2009年01期
相关博士学位论文 前2条
1 罗跃生;硅微型陀螺仪的力学分析和数学模型[D];哈尔滨工程大学;2003年
2 何昆鹏;MEMS惯性器件参数辨识及系统误差补偿技术[D];哈尔滨工程大学;2009年
相关硕士学位论文 前10条
1 陈猛;基于DSP和模糊PID的稳定平台的设计[D];哈尔滨工程大学;2010年
2 梁丽娟;基于机器人及军用导航系统的MEMS陀螺仪性能研究[D];北京交通大学;2011年
3 蔡雄;硅微机械陀螺仪的随机误差建模与补偿[D];南京理工大学;2011年
4 刘永;小波分析在MEMS陀螺信号降噪中的应用研究[D];国防科学技术大学;2011年
5 夏鲁瑞;移动载体稳定跟踪平台关键技术研究[D];国防科学技术大学;2005年
6 陆芳;MIMU中陀螺随机漂移建模及Kalman滤波技术研究[D];中北大学;2007年
7 尹文;MIMU微惯性测量单元误差建模与补偿技术[D];国防科学技术大学;2007年
8 周振宇;一种用于车载导航系统的MEMS陀螺性能研究[D];天津大学;2007年
9 温佰仟;微小型MEMS陀螺的误差特性研究[D];南京航空航天大学;2008年
10 周结华;基于运动载体的平台稳定系统控制方法研究[D];厦门大学;2009年
本文编号:2441079
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2441079.html