大功率多元液力调速系统性能研究
[Abstract]:Rotating machinery, such as fan and water pump, is a widely used power equipment in the fields of metallurgy, mine, electric power, etc., and its electric energy consumption occupies a great proportion of China's industrial electricity consumption. As long as the variable-speed regulation and operation of the fan and the water pump can save energy, the research of the variable-speed regulation technology is of great significance to the high-efficiency utilization of energy. At present, the power machine in the industrial production is developed in the direction of high power and large capacity, and the operating power of the fan water pump is also increased to several thousand to several thousand kilowatts, but the existing speed regulation technology is difficult to realize the wide speed regulation range and high efficiency transmission of the transmission system under the condition of high power and large capacity transmission power. In this background, this paper studies the variable-speed regulation of high-power fan water pump, and probes into the new technical solution, which is of great significance to the energy-saving, energy-saving and energy-saving of large-scale rotating machinery used in power production in China, and to improve the safety and reliability of equipment operation. This paper is supported by the "Research on High-power and Multi-element Compound Hydraulic Speed-regulating System" of the basic scientific research operating expense project of Jilin University. The paper studies a high-power multi-component hydraulic speed-regulating system with constant-speed input and variable-speed output. The system is suitable for the variable-speed regulation and operation of high-power pump and fan. The multi-element hydraulic speed regulation system is based on the principle of power split transmission, and has the characteristics of large transmission power, wide speed regulation range and high transmission efficiency. The research work and conclusion about the key problems such as the transmission system model, the power analysis of the speed-regulating system, the adjustable guide vane and the output characteristic of the system are as follows: (1) Two transmission systems based on the principle of power split transmission are analyzed In this case, the transmission mode and the single-motor-driven transmission mode of the double-motor are driven in parallel, and the respective states of the two modes are analyzed. In this paper, the transmission model of the multi-element hydraulic speed regulation system based on the power split transmission principle is put forward, and the different working stages of the multi-element hydraulic speed-regulating system are briefly described. Analysis of the power flow direction of two rows of planetary gear train and guide vane adjustable torque converter by using the node method of planetary gear train power flow analysis The relationship between the speed, torque and power of the fixed planetary gear train and the rotating planetary gear train is derived, and the speed, torque and power relation of the pump wheel and the turbine of the variable torque converter of the guide vane are obtained, and the efficiency of the speed regulation system is given. The key hydraulic element _ guide vane adjustable hydraulic system in the speed-regulating system is designed by using the similar method. The torque converter is designed to complete the key links such as the cycle circle and the blade of the torque converter, and the D = 710 mm adjustable torque converter is obtained. The flow field calculation model is established for the designed guide vane adjustable torque converter, and the flow field of the adjustable torque converter with different opening degrees is simulated by the CFD method, and the internal flow field characteristics and the external rotation of the torque converter are predicted. In this paper, the performance of the speed-regulating fluid coupling and the hydraulic speed reducer is studied by means of numerical simulation, and the original characteristics of the speed-regulating fluid coupling and the system of the hydraulic speed reducer are analyzed. (3) Based on the calculation of the original characteristic of the fluid coupling, the output characteristic of the low-speed section speed-regulating system under different liquid-filling rate is predicted, and the output characteristic of the high-speed section hydraulic speed-regulating system on the basis of the calculation of the characteristic of the adjustable torque converter is completed. The relationship between the opening degree of the guide vane and the output characteristic of the system is studied. With the increase of the opening of the guide vane, the output speed and the torque of the speed-regulating system are increased, and the power and the hydraulic power of the torque converter account for the input power. The ratio is increased. At the same time, the characteristic parameters of the variable torque converter of the guide vane in the speed regulation process are studied with the opening degree. The influence of the characteristic parameters of the fixed planetary gear on the high-efficiency section range of the hydraulic speed-regulating system is analyzed. When the characteristic parameters of the fixed planetary gear are increased, the high-efficiency section of the speed-regulating system is low The speed-regulating system of the original design is higher in the speed-regulating range than the speed-regulating system of the original design compared with the speed-regulating system after changing the characteristic parameters and the efficiency curve of the load regulation of the centrifugal fan by the speed regulation system and the fluid coupling is finally compared, the speed regulation of the hydraulic speed regulation system can be used for realizing high-efficiency transmission in a wider speed regulation range,
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH137.332
【相似文献】
相关期刊论文 前10条
1 李志;;装载机变速器故障及排除[J];甘肃冶金;2011年04期
2 孙大平;;2010款雷克萨斯RX270新技术剖析(四)[J];汽车维修技师;2011年07期
3 郑中;;雪佛兰科迈罗新技术剖析(三)[J];汽车维修技师;2011年07期
4 司文;;SGA3722液力机械传动机构油温过高故障原因及解决措施[J];机械研究与应用;2011年03期
5 张纲;苏丁;;自动变速器故障诊断试验分析[J];汽车运用;2011年09期
6 李绪进;;2007款日产骊威冷车有时起步不走[J];汽车维修技师;2011年07期
7 杨晓芳;;别克轿车发动机常见噪音诊断及排除[J];大众科技;2011年08期
8 王涛;邳锐;刘阳江;黄绵剑;;旋转打开式散热器在装载机上的应用[J];工程机械;2011年09期
9 姜楠;;通用6T40E变速器控制电路分析[J];汽车维修与保养;2011年09期
10 王宪文;王宏波;;2009款奔腾B50自动变速器换挡冲击[J];汽车维修技师;2011年09期
相关会议论文 前10条
1 陈纪新;;装卸运输机械中液力变矩器的应用[A];上海物流工程学会2003’论文集[C];2003年
2 花胜利;;高原型推土机动力系统的合理匹配[A];2003年内蒙古自治区自然科学学术年会优秀论文集[C];2003年
3 李树生;;新型柴油机偶合器机组在石油钻机上的应用[A];2004年石油装备年会暨庆祝江汉机械研究所建所40周年学术研讨会论文集[C];2004年
4 曾洁;张丽艳;李桂林;;车用自动变速器检测实验装置的解决方案[A];第25届中国控制会议论文集(中册)[C];2006年
5 杨乃乔;;液力传动油的现状与发展[A];液压(液力)用油品质及污染控制技术论文集[C];2004年
6 ;Voith福伊特DIWA自动变速器在南美快速公交(BRT)中的应用[A];中国巴士快速交通行动大会会议资料[C];2005年
7 陈星;陈树国;;如何评价内燃平衡重式叉车[A];中国机械工程学会物料搬运专业学会第三届年会论文集[C];1988年
8 薛佳颖;陈祖国;;提高装载机变速泵及吸油系统的吸油能力[A];福建省科协第五届学术年会“依靠科技进步 促进农业机械化”分会场论文集[C];2005年
9 米合允;王彤;万德玉;;对发展我国石油钻机柴油机的建议[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年
10 张鹏;许纯新;朱振宇;;轮式装载机模糊自动变速技术的研究[A];中国工程机械学会2003年年会论文集[C];2003年
相关重要报纸文章 前10条
1 所宣;七一所变矩器首进俄罗斯[N];中国船舶报;2007年
2 李川;巧发明 大受益[N];中国信息报;2008年
3 崔保运;山推液变厂首季营销创纪录[N];中国工业报;2006年
4 曲洋;巧发明 大受益[N];大众科技报;2009年
5 王冀;戴-克开发出7速自动变速器[N];中国汽车报;2003年
6 河北省秦皇岛港务集团有限公司 周晓贵;KLD85ZIV型装载机变速器的拆检[N];中国建材报;2007年
7 证券时报记者 张栋邋张旭升;航天动力 等待猜想变成现实[N];证券时报;2008年
8 霍历柯;光明“威肯”打造泰安叉车旗舰[N];现代物流报;2008年
9 记者 刘泓波邋通讯员 王永刚;大功率柴油机耦合器机组节油又高效[N];中国石油报;2008年
10 本报记者 张翼;ZF第30万台Ecomat变速箱下线[N];机电商报;2007年
相关博士学位论文 前10条
1 张泰;越野汽车液力变矩器和机械自动变速系统的控制理论与试验[D];吉林大学;2004年
2 姚怀新;工程车辆液压动力学关键问题的理论研究与试验台建设[D];长安大学;2006年
3 洪涛;工程机械自动变速理论与控制系统研究[D];同济大学;2007年
4 崔功杰;工程车辆三参数最佳换挡规律及控制方法研究[D];吉林大学;2009年
5 韩顺杰;基于支持向量机的工程车辆自动变速方法研究[D];吉林大学;2009年
6 赵克利;提高工程车辆智能变速性能的综合控制研究[D];吉林大学;2004年
7 杨亚联;金属带无级自动变速传动的关键问题研究[D];重庆大学;2002年
8 朱振宇;工程车辆自动变速智能控制系统试验研究[D];吉林大学;2004年
9 胡建军;汽车无级变速传动系统建模、仿真及其匹配控制策略研究[D];重庆大学;2001年
10 郝允志;无级变速器控制系统与硬件在环仿真研究[D];重庆大学;2011年
相关硕士学位论文 前10条
1 杜魏魏;风力发电可变导叶液力机械调速装置研究[D];吉林大学;2011年
2 韩瑜;大功率多元液力调速系统性能研究[D];吉林大学;2012年
3 杜洋;心外科与心内科治疗心房颤动的疗效评价[D];吉林大学;2012年
4 杨国朝;基于CFD的C5000变矩器内部流场分析[D];郑州大学;2010年
5 齐迎春;数值模拟技术在液力变矩器流场分析中的应用[D];吉林大学;2004年
6 高冬梅;液力变矩器性能试验计算机测控系统的研制[D];中国农业大学;2005年
7 杜洋;基于AMESim的装载机液力传动匹配的研究与特性分析[D];吉林大学;2012年
8 甄波;液力变矩器膨胀试验机自动测试系统的开发[D];浙江大学;2002年
9 李勤;4T65E型液力变矩器的变形仿真研究[D];浙江大学;2003年
10 熊欣;基于虚拟制造的液力变矩器设计与开发[D];武汉理工大学;2004年
本文编号:2477994
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2477994.html