复杂装备故障预测与健康管理关键技术研究
[Abstract]:In recent years, the safety and reliability of complex equipment systems such as aviation, space and ship have become the focus of attention. As a result of its complex structure, a large loss can be caused once a failure occurs. Therefore, it is urgent to improve the reliability, repair and safety of the complex equipment system. However, the current research work in the field of fault diagnosis is mainly focused on the state evaluation and fault diagnosis of the research system, and concerned is the running state of the system "Current", and the research on system fault prediction and health management is less. This traditional "post-post service" and "plan and repair" approach is seriously inadequate in dealing with new situations of transient change. The "visual maintenance" and the "Predict maintenance" eliminate the fault in the bud state and become the development direction of the system maintenance and guarantee in the future. Therefore, in recent years, the research on the fault prediction and health management (PHM) has become the research focus of the domestic and foreign scholars, and the PHM technology represents the fault diagnosis technology from the traditional sensor-based diagnosis to the prediction of the intelligent system. But, at present, the research in this area has just started, and the research results are more In this paper, the key theory and technology involved in the PHM technology of complex equipment are studied, and the main content package includes: first, complex equipment PHM service mode Based on the analysis of the characteristics of complex equipment and the shortcomings of the traditional fault diagnosis model, a new service-oriented PHM system is proposed. This paper studies the system service model and characteristics, analyzes the key technology and main function modules required in the system construction process, and provides a kind of public PHM system service platform research in the field of complex equipment. New ideas. Second, data reduction and failure diagnosis Fault diagnosis is the core content of PHM, which is based on nonlinear manifold learning and Hidden Markov Model (HMM). The hybrid HMM model divides the system state into the normal state, the intermittent fault, the intermediate state and the fault state, so as to fully reflect the system state. In this paper, the original high-dimensional fault data is mapped to a low-dimensional space by a local holding projection algorithm (LPP), and the inner manifold characteristic of the extracted data is taken as a feature vector, and the mixed HMM is used as a classifier to realize the pair of states. The results show that the LPP-HMM method can effectively identify the early fault features and has higher accuracy. Fault recognition rate. Third, time series The prediction of fault is the key to the PHM, and the auto-regressive and moving average model (ARMA) and the artificial neural network (ANN) are put forward. The method of state prediction is based on the advantage of the linear part of the capture time series and the good performance of the ANN processing non-linear time series by using the ARMA model. The linear part of the time series is established by the ARMA model, and the neural network model is established by the remainder of the sequence. Based on the hybrid model, a model of satellite telemetry voltage data is taken as an example to realize the static model prediction and the dynamic model prediction of the telemetry parameters. The experimental results show that the hybrid dynamic model has the characteristics of Based on the mixed model, a state monitoring method is realized by using the telemetry pressure data as an example, and the experiment shows that the method can be used effectively. Reduce the false alarm rate of the fault. Fourth, the fault knowledge Modeling and service technology research. The fault knowledge management is the foundation of the PHM, aiming at the problems of low reuse rate, serious knowledge fault and the like of the current fault diagnosis knowledge resource, and the fault knowledge management is based on the fault of the domain ontology in that first place, two types of fault knowledge classification method of static and dynamic are put forward, and the reasoning knowledge body and the multi-domain knowledge body are constructed; then, based on the reasoning knowledge body, the fault knowledge reasoning is realized, The index, the semantic annotation, the semantic retrieval and the knowledge management of the source can effectively acquire the diagnosis static knowledge in the stages of product design, test and the like; and through the service encapsulation and the semantic annotation of the relative curing diagnosis and the prediction model knowledge resources, the dynamic knowledge is realized. Knowledge search and call service to effectively improve the diagnosis knowledge resource Use efficiency and reuse rate. 5. The development of PHM service system. Based on the above research contents, taking the spacecraft as an example, for the characteristics of its on-orbit operation, the research The ground PHM system of the spacecraft is developed. The fault prediction, the fault diagnosis, the fault knowledge management and the service are integrated to improve the capability of the spacecraft in the operation and maintenance of the rail and the ground test. In this paper, the service mode and key technology of the PHM system of complex equipment are analyzed and studied systematically, and the corresponding PHM prototype system is developed and verified by combining the characteristics of the spacecraft. The feasibility and effectiveness of the method proposed in the paper. Through the research of this paper, it is necessary to improve the diagnosis and maintenance of complex equipment
【学位授予单位】:北京理工大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TH165.3
【相似文献】
相关期刊论文 前10条
1 陈伟;罗华;;多传感器信息融合技术与无人机PHM系统[J];航空科学技术;2009年06期
2 冯广斌 ,钱林方;机械系统PHM技术研究[J];火炮发射与控制学报;2000年04期
3 陈伟;赵博;;多传感器信息融合技术与无人机PHM系统[J];桂林航天工业高等专科学校学报;2009年04期
4 张叔农;康锐;;数据挖掘技术在航空发动机PHM中的应用[J];弹箭与制导学报;2008年01期
5 何献武;曾振建;贾慧;胥辉旗;;PHM技术在反舰导弹维修保障中的传感器网络应用研究[J];仪器仪表用户;2007年02期
6 孙博;康锐;张叔农;;基于特征参数趋势进化的故障诊断和预测方法[J];航空学报;2008年02期
7 苟永明;第十三届全国测试与故障诊断技术研讨会取得圆满成功[J];计算机测量与控制;2004年06期
8 吴康祥;杨红;;设备故障诊断技术及应用设想[J];梅山科技;2001年03期
9 ;2006设备节能与故障诊断技术研讨会即将召开[J];今日中国论坛;2006年06期
10 叶银忠;故障诊断技术的发展趋势及我们的对策[J];自动化博览;2002年03期
相关会议论文 前10条
1 田瑾;赵廷弟;;机械产品故障预测和状态管理(PHM)技术研究[A];2004年全国机械可靠性学术交流会论文集[C];2004年
2 李文强;;PHM技术在无人机中应用[A];2014(第五届)中国无人机大会论文集[C];2014年
3 王萍;;无人机系统PHM的要求确定和设计方法[A];探索 创新 交流——第六届中国航空学会青年科技论坛文集(上册)[C];2014年
4 张永强;王丽;;PHM技术在无人机领域的应用与研究[A];2014(第五届)中国无人机大会论文集[C];2014年
5 高秋颖;钱红余;;航空发动机预测健康管理(PHM)技术[A];面向航空试验测试技术——2013年航空试验测试技术峰会暨学术交流会论文集[C];2013年
6 田巍;张瑞敏;魏娜;康杰;;PHM在无人机维修中的应用[A];航空装备维修技术及应用研讨会论文集[C];2015年
7 张利;徐娟;张建军;程龙;赵佛晓;;基于网格的远程协同故障诊断资源管理模型研究[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(上册)[C];2009年
8 商斌梁;张振仁;;基于小波与遗传算法的气阀机构的故障诊断[A];2001年中国智能自动化会议论文集(下册)[C];2001年
9 刘富;罗巧梅;;基于PHM的北斗用户设备维修保障研究[A];第三届中国卫星导航学术年会电子文集——S08卫星导航模型与方法[C];2012年
10 李娟;;浅谈泵站设备故障诊断问题[A];2009全国大型泵站更新改造研讨暨新技术、新产品交流大会论文集[C];2009年
相关重要报纸文章 前10条
1 武汉科技学院纺织服装学院 林子务;故障诊断中的数学概念[N];中国纺织报;2004年
2 邢小兵 记者 王瑶;我国首个航天器在轨故障诊断与维修实验室成立[N];解放军报;2014年
3 杨亚洲 邢小兵 记者 齐小英;航天器故障诊断与维修室在西安成立[N];陕西日报;2013年
4 李萍;济钢EAM离线网络点检和故障诊断管理系统开发应用[N];世界金属导报;2007年
5 ;点火系故障诊断[N];华夏时报;2001年
6 本报记者 谢湘 王尧;北京理工大学:把企业请进来 让学生的手动起来[N];中国青年报;2008年
7 本报记者 田国垒;吉林省纪检委派人调查[N];中国青年报;2011年
8 本报记者 闵杰;全国政协委员、北京理工大学教授王涌天:我国部分VR技术已超前[N];中国电子报;2017年
9 本报记者 谭华健;转化科技成果助中山产业升级[N];中山日报;2017年
10 本报记者 许茜;爆炸实验室里的深情“表白”[N];科技日报;2017年
相关博士学位论文 前10条
1 李向前;复杂装备故障预测与健康管理关键技术研究[D];北京理工大学;2014年
2 王奉涛;非平稳信号故障特征提取与智能诊断方法的研究及应用[D];大连理工大学;2003年
3 钱华明;故障诊断与容错技术及其在组合导航系统中的应用研究[D];哈尔滨工程大学;2004年
4 蒋丽英;基于FDA/DPLS方法的流程工业故障诊断研究[D];浙江大学;2005年
5 韩彦岭;面向复杂设备的远程智能诊断技术及其应用研究[D];上海大学;2005年
6 张君;小波分析技术在汽轮机故障诊断中的应用研究[D];华北电力大学(河北);2005年
7 邓学欣;开放式故障诊断构架及动态测试分析方法研究[D];天津大学;2004年
8 谭树彬;轧机厚控系统状态监测与故障诊断的研究与应用[D];东北大学;2006年
9 贾明兴;不确定系统鲁棒故障诊断[D];东北大学;2003年
10 刘敏华;基于SDG模型的故障诊断及应用研究[D];清华大学;2005年
本文编号:2488268
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2488268.html