基于数据驱动的转子故障特征信息建模方法研究
[Abstract]:With the rapid development of information science and technology, computer technology and various intelligent instruments have been widely used in the monitoring of mechanical equipment. The massive process data reflecting the running state of the system has been collected and stored. However, there are the defects of "rich data, but lack of information". Based on these off-line operation data and intelligent data analysis algorithm, a quantitative feature model which can scientifically describe the running state of mechanical equipment is established. The realization of intelligent automatic identification of machine faults in the development of mechanical equipment information technology plays a very active role. Therefore, starting from the construction of quantitative feature pattern reflecting the characteristics of mechanical equipment information, and based on the principle of knowledge discovery in data mining, this paper revolves around the use of intelligent data analysis tools. The research work of fault monitoring and diagnosis method based on data drive is carried out. By using the common algorithm of data-driven fault diagnosis, the construction of quantitative feature mode reflecting the characteristics of mechanical equipment information and the classification method of unbalanced fault data set are discussed in order to quantitatively describe the operation status of the unit. The online diagnosis of fault mode is realized. The main research work of this paper includes the following aspects: (1) the extraction method of multi-domain features is introduced, and the fault data classification method of KPCA-SVM is studied. The application of this method in rotor system fault diagnosis is also discussed. (2) aiming at the problem of quantitative feature description of fault information, a weighted KPCA method for feature selection and feature information fusion is proposed. Firstly, the multi-domain feature parameters of time domain, frequency domain and time-frequency domain are extracted from the vibration signal of a single channel, and the sensitive features conducive to fault pattern identification are screened out by feature selection method. Secondly, the fusion feature vector is obtained by fusion of the sensitive features of multi-channel, and then the kernel principal components of the fusion feature vector are extracted by weighted KPCA method. The experimental results of SVM classifiers show that the algorithm can effectively identify different fault types. (3) in order to solve the problems of low classification accuracy and low identification efficiency of unbalanced fault data, a similarity factor analysis method based on sliding window is proposed. In this method, the sliding window technology is introduced, and the PCA similarity factor between the target data and the historical data is analyzed, and the data similar to the diagnostic target is screened out from the old process data to form the data pool to be selected. Then the distance similarity factor is used to select the data most similar to the target data from the data pool to be selected for auxiliary training. This method is applied to the unbalanced data classification of rotor faults, and the KPCA-SVM method is used for fault classification under different slope. The results show that this method can effectively improve the boundary of classification decision and reduce the misdiagnosis rate caused by the imbalance of samples. (4) based on the development direction of "virtualization" and "control" in the development of test and measurement instruments, the system software architecture and application of intelligent control virtual instruments are studied. Under the platform of C # software, the experimental system scheme of rotor system fault data acquisition is put forward, and the following modules are designed: waveform display module, motor control module, data storage module.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TH165.3
【参考文献】
相关期刊论文 前10条
1 张敬芬,赵德有;基于模糊神经网络和数据融合的结构裂纹故障诊断[J];船舶力学;2004年02期
2 谢春丽,夏虹,刘永阔;多传感器数据融合技术在故障诊断中的应用[J];传感器技术;2004年04期
3 李兵;张培林;任国全;刘东升;米双山;;基于互信息的滚动轴承故障特征选择方法[J];测试技术学报;2009年02期
4 李洁;高新波;焦李成;;基于特征加权的模糊聚类新算法[J];电子学报;2006年01期
5 张万斌;;时频域特征因子诊断滚动轴承故障的试验研究[J];鞍钢技术;1993年10期
6 李巍华,廖广兰,史铁林,杨叔子;基于核函数主元分析的机械设备状态识别[J];华中科技大学学报(自然科学版);2002年12期
7 蒋玉娇;王晓丹;王文军;毕凯;;一种基于PCA和ReliefF的特征选择方法[J];计算机工程与应用;2010年26期
8 肖健华;吴今培;;样本数目不对称时的SVM模型[J];计算机科学;2003年02期
9 刘天羽;李国正;;滚动轴承故障诊断中数据不均衡问题的研究[J];计算机工程与科学;2010年05期
10 隋文涛;路长厚;张丹;;基于加权FCM算法的轴承故障诊断[J];武汉理工大学学报(交通科学与工程版);2010年01期
相关博士学位论文 前7条
1 曾庆虎;机械传动系统关键零部件故障预测技术研究[D];国防科学技术大学;2010年
2 胡友强;数据驱动的多元统计故障诊断及应用[D];重庆大学;2010年
3 雷亚国;混合智能技术及其在故障诊断中的应用研究[D];西安交通大学;2007年
4 吴胜强;核主元分析及证据理论的多域特征故障诊断新方法研究[D];燕山大学;2011年
5 张丽新;高维数据的特征选择及基于特征选择的集成学习研究[D];清华大学;2004年
6 彭兵;基于改进支持向量机和特征信息融合的水电机组故障诊断[D];华中科技大学;2008年
7 杨智明;面向不平衡数据的支持向量机分类方法研究[D];哈尔滨工业大学;2009年
相关硕士学位论文 前6条
1 童忆莹;基于增量聚类和ReliefF的特征选择方法[D];西南大学;2011年
2 霍天龙;基于支持向量机的转子系统故障诊断方法研究[D];兰州理工大学;2011年
3 范先念;数据不平衡分类问题研究[D];中国科学技术大学;2011年
4 杨慧斌;滚动轴承故障诊断中的特征提取与选择方法[D];湖南工业大学;2011年
5 向阳辉;基于信息融合技术的旋转机械故障诊断研究[D];中南大学;2007年
6 马再超;转子故障数据分类方法研究与实验台测试信息系统开发[D];兰州理工大学;2012年
,本文编号:2494884
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2494884.html