汽车门锁闭锁器小模数齿轮副啮合性能的有限元研究
[Abstract]:The minor-to-digital gear pair for transmission in the automobile door lock latch is used for pairing the plastic gear and the metal gear, and the metal gear is a driving wheel. The gear pair not only has the advantages of light weight, vibration absorption, self-lubricating, and the like of the plastic gear, but also can improve the heat dissipation by using the good thermal conductivity of the metal material. However, the plastic elastic modulus is low, the thermal conductivity is poor, the coefficient of thermal expansion is large, the plastic gear is in the design, the application of the plastic gear does not have a uniform reference standard, and according to the metal gear, the large difference can be brought; and the analysis and research on the pair of gear pairs are relatively small. Therefore, it is of great theoretical and practical significance to make a systematic and effective analysis of the meshing performance of this kind of gear, and it also has a high economic effect for the enterprises applying such gear pair, and it is also important to put forward the principle of the secondary design of the gear and the research method. In this paper, the small-modulus gear pair in a car door lock latch is used as the research object. First, the gear pair model is set up in the CAXA electronic map, and then the meshing performance of the gear pair is analyzed and researched by using the finite element analysis theory and the ANSYS2.0 finite element analysis software. A. Main work, such as Lower: (1) Contact finite element analysis of gear pair: set up the accurate contact pressure model of the gear pair, and study the contact stress and strain distribution of the gear pair in one meshing period, and sum up the points of stress and strain within one meshing period The rule of cloth is that the maximum contact stress of the gear pair is 4.197 MPa, the strain is 7.035. m u.m, and the maximum stress and strain occur when the gear pair is in mesh with the node (2) The finite element analysis of the temperature field of the main body of the plastic gear: the generation and propagation of heat in the gear pair transmission is discussed in detail. The basic equations of some definition and the thermodynamic finite element analysis of the gear pair are introduced in detail, and the gear pair is obtained. Friction heat flow; a single-tooth finite element model of a plastic gear is established; the maximum temperature of the plastic gear at the time of operation is 42.447 DEG C, the temperature rise reaches 7.447 DEG C, and the highest temperature occurs in the vicinity of the pitch circle, the friction heat distributed by the metal gear accounts for most of the total friction heat flow, as at the point of engagement at the node (3) On the basis of the contact analysis and thermal performance analysis, the thermal-structural coupling performance analysis of the gear pair is carried out when the node is engaged, and the thermal expansion coefficient and the elastic modulus of the plastic material (decrease with the temperature increase) are discussed to the gear pair The influence of the meshing performance is that the contact stress is the largest (10.449 MPa) in the coupling analysis considering the two factors, the coupling analysis with only the influence of the elastic modulus is the minimum (3.950MPa), and the main factor affecting the coupling performance of the gear is the heat of the plastic gear (4) The finite element analysis of the contact fatigue life of the plastic gear: the failure mode and the failure mechanism of the plastic gear are discussed. The contact fatigue life of the gear pair at the node is analyzed, and the fatigue life of the gear teeth of the plastic gear is 52130 (less than the actual). 60,000 times), while the cumulative fatigue factor is 1 ............................................................................................................................................................ In general, the contact strength and heat resistance of the gear pair can meet the working requirements and have greater redundancy; and the contact fatigue performance can not meet the working requirements, and the contact fatigue life can not meet the design requirement,
【学位授予单位】:南京农业大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:U463.854;TH132.41
【参考文献】
相关期刊论文 前10条
1 刘广建,李二英;超高分子量聚乙烯在轴套、轴承上的应用[J];工程塑料应用;1995年05期
2 刘广建,徐俊艳;塑料齿轮失效形式及机理分析[J];工程塑料应用;1996年01期
3 刘广建;塑料齿轮的结构设计[J];工程塑料应用;1998年01期
4 郝瑞贤;李元宗;;对我国塑料齿轮发展的一些思考[J];工程塑料应用;2007年03期
5 许艳玲;张保;许骥;;基于ANSYS的6110曲轴疲劳分析[J];传动技术;2009年01期
6 孙晓伟,毛昆;塑料齿轮传动磨损特点[J];材料科学与工程;1999年03期
7 黄亚玲;秦大同;罗同云;龚为伦;;基于ANSYS的斜齿轮接触非线性有限元分析[J];四川兵工学报;2006年04期
8 刘光新;影响塑料齿轮使用寿命的因素分析[J];常州信息职业技术学院学报;2005年03期
9 孙建国;闵阳春;;独立通风型SS9电力机车齿轮温度场分析[J];电力机车与城轨车辆;2009年05期
10 徐佩弦;;塑料齿轮抗弯疲劳强度与摩擦磨损[J];电子工艺技术;1990年03期
相关博士学位论文 前1条
1 李绍彬;高速重载齿轮传动热弹变形及非线性耦合动力学研究[D];重庆大学;2004年
相关硕士学位论文 前9条
1 邢志伟;超临界/超超临界火电机组齿轮传动系统稳态热分析[D];机械科学研究总院;2011年
2 康凯;塑料齿轮强度研究[D];北京化工大学;2001年
3 李磊;塑料蜗轮与钢制蜗杆的啮合性能研究[D];同济大学;2007年
4 汝艳;低速重载齿轮本体温度场的研究[D];合肥工业大学;2007年
5 王婧;塑料齿轮松驰时间研究[D];北京交通大学;2008年
6 刘淞;混杂填充尼龙6复合材料机械性能研究[D];南京农业大学;2008年
7 李卓富;轿车变速箱低速档齿轮动力学仿真及热分析[D];哈尔滨工业大学;2009年
8 陈磊;基于ANSYS的行星减速器温度场分析[D];南京航空航天大学;2009年
9 胡艳如;齿轮喷药泵的有限元分析及优化[D];西北农林科技大学;2010年
,本文编号:2503285
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2503285.html