大红山铁矿Ⅱ 1矿体370m中段采场结构参数优化研究
本文关键词: 结构参数 实验研究 数值模拟 低贫化放矿 现行截止品位放矿 矿石损失和贫化 出处:《昆明理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:自20世纪60年代无底柱分段崩落法引入我国以来,凭其安全性好,回采效率高、成本低等优点,已经在我国地下金属矿山广泛应用。但是该法存在一个较为严重的问题,也是困扰着采矿界专家学者的难题之一,即矿石贫化非常严重。产生矿石贫化的主要原因是放矿过程中矿岩直接接触,造成废石混入面大,混入机会多。如果不合理的控制废石的混入,将造成矿山企业的一级产品质量下降,二级产品处理的费用增加。采场结构参数组合的选择合理与否也是影响矿石回收指标的因素之一,合理的采场结构参数会给矿山带来丰盈的经济效益,相反,不合理的结构参数组合会增大采出矿石的贫化率,减小回收率等指标。因此,为提高矿山企业总体经济效益,有必要对采场结构参数进行优化研究。本论文的课题是针对大红山铁矿矿石贫化损失严重,矿石回收率较低等问题而提出的,大红山铁矿一期采用20×20的大结构参数之后,矿石损失贫化问题尤为突出。针对大红山铁矿这一问题展开如下研究:1、在实验室进行单体放矿实验,采用单放矿口进行放矿,由标志颗粒放出的顺序及达孔量绘制出放出体形态,并对放出体进行回归拟合得出矿石散体流动参数:α=1.814;β=0.179;α1=1.535;β1=0.313;k=0.192,利用经验公式法和散体流动有效带法初步确定大红山铁矿进路间距为23.8m和崩矿步距为5.2~5.5m。2、采用正交试验设计表L9(34)安排9组不同结构参数组合的放矿方案,并采用多分段立体放矿模型进行室内实验放矿,实验矿岩取自于矿山取样部,在放过过程中分别进行低贫化和现行截止品位放矿,确定矿山放矿截止品位为18%,并初步得出当分段高度为30m、进路间距为25m或20m、崩矿步距为4.5~5.5m时,矿石回收指标取得较好。3、通过PFC计算机仿真模拟,分别建立不同结构参数组合的放矿模型,放矿过程中,采用低贫化和截止品位矿两种放矿方式严格控制放矿,当放出矿石与废石质量之比达到设定截止条件时,停止放矿,分别记录放出矿岩球体个数并保存,然后对放出数据和结果进行统计分析,得出分段高度×进路间距为30×25m的结构参数其放矿所得回贫指标优于30×20m。综合分析对大红山铁矿进行单体放矿、多分段立体放矿实验和数值模拟的研究结果,确定了矿山低贫化放矿方案,提出适宜大红山铁矿采场结构参数为:分段高度30m、进路间距25m、崩矿步距5.2~5.5m、进路巷道尺寸6.1×4.1m(宽×高)。
[Abstract]:Since its introduction into China in 1960s, the sublevel caving method without bottom pillar has been widely used in underground metal mines in China because of its advantages of good safety, high mining efficiency and low cost. However, there is a serious problem in this method. It is also one of the difficult problems for experts and scholars in mining industry, that is, ore dilution is very serious. The main reason for ore dilution is the direct contact of ore and rock during drawing, which results in a large mixing surface of waste rock. If the mixing of waste rock is controlled unreasonably, it will cause the first grade product quality of the mining enterprise to decline. The reasonable selection of stope structure parameters is also one of the factors that affect the ore recovery index. Reasonable stope structure parameters will bring abundant economic benefits to the mine, on the contrary, Unreasonable combination of structural parameters will increase the dilution rate of ore and reduce the recovery rate. Therefore, in order to improve the overall economic benefits of mining enterprises, It is necessary to optimize the structural parameters of stope. The subject of this paper is to solve the problems of serious ore dilution loss and low ore recovery rate in Dahongshan Iron Mine. After the large structural parameters of 20 脳 20 are adopted in the first phase of Dahongshan Iron Mine, The problem of ore loss and dilution is particularly prominent. In view of the problem of Dahongshan Iron Mine, the following research is carried out as follows: 1. Single ore drawing experiments are carried out in the laboratory, and single ore drawing ports are used for ore drawing. Drawing out the shape of the releasing body from the sequence of release of the mark particles and the volume of the reached pores, The flow parameters of ore pellets were obtained by regression fitting: 伪 1. 814; 尾 -0.179; 伪 1 + 1. 535; 尾 1 + 0. 313 ~ (13) K ~ (-1) 0.192.Using empirical formula method and effective zone method of bulk flow, it was preliminarily determined that the distance between the entry road of Dahongshan Iron Mine was 23.8m and the distance of caving step was 5.25.5m. 2, and the orthogonal design table L9N34) was used. To arrange 9 ore drawing schemes with different structural parameters, The laboratory ore drawing is carried out by using a multi-segmented stereoscopic drawing model. The experimental ore rock is taken from the sampling department of the mine, and in the process of release, the ore drawing is carried out respectively with low dilution and current cutoff grade. The cutoff grade of ore drawing is determined to be 18, and it is preliminarily concluded that when the sublevel height is 30m, the distance between entry routes is 25m or 20m, and the walking distance of caving ore is 4.5 ~ 5.5m, the ore recovery index is better. 3. The ore recovery index is simulated by PFC computer simulation. In the process of ore drawing, two kinds of drawing methods, low dilution and cut off grade ore, are adopted to strictly control the drawing, and when the ratio of the quality of the ore to the waste rock reaches the set cut-off condition, the ore drawing will be stopped. The number of pellets released from ore is recorded and preserved respectively, and then the data and results of the discharge are statistically analyzed. It is concluded that the structural parameters with sectional height 脳 path spacing of 30 脳 25m are better than 30 脳 20m in lean index of ore drawing. The results of comprehensive analysis of single ore drawing, multi-segment stereoscopic ore drawing experiment and numerical simulation of Dahongshan Iron Mine have been carried out. The low dilution drawing scheme of the mine is determined, and the structural parameters of the stope suitable for Dahongshan Iron Mine are proposed as follows: the sectional height is 30m, the distance between the entry roads is 25m, the walking distance of the caving is 5.2 ~ 5.5m, and the size of the entry roadway is 6.1 脳 4.1m (wide 脳 high).
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD861.1
【参考文献】
相关期刊论文 前10条
1 孙浩;金爱兵;高永涛;孟新秋;;期望体理论的实验研究及端部放矿崩矿步距优化[J];工程科学学报;2016年09期
2 杨宫印;陈玉明;;无底柱分段崩落法无贫化放矿理论研究与探索[J];有色矿冶;2015年05期
3 何荣兴;任凤玉;宋德林;马娇阳;;无底柱分段崩落法崩矿步距优化方法及应用[J];矿业研究与开发;2015年08期
4 冯浩楠;舒太镜;郭建来;;某铁矿无底柱分段崩落法最优结构参数研究[J];有色金属(矿山部分);2015年04期
5 邱海涛;秦国保;吴荣高;丁航行;;梅山铁矿大采场结构参数的工业试验方案[J];采矿技术;2015年02期
6 温彦良;张国建;张治强;;无底柱分段崩落法放矿规律的数值试验研究[J];矿业研究与开发;2014年05期
7 蔡序淦;门建兵;黄德福;;无底柱分段崩落法结构参数选取的影响因素[J];有色冶金设计与研究;2014年03期
8 潘贵豪;明世祥;徐兰军;;无底柱分段崩落法放矿模型研究及应用[J];矿业研究与开发;2014年01期
9 马毅敏;周文略;;急倾斜厚大矿体高分层连续充填采矿方法研究[J];金属矿山;2013年11期
10 吴爱祥;武力聪;刘晓辉;孙希文;周颖;尹升华;;无底柱分段崩落法结构参数研究[J];中南大学学报(自然科学版);2012年05期
相关会议论文 前1条
1 何波;吴长存;明世祥;彭天荣;严成涛;;首云铁矿无底柱分段崩落法试验采场截止品位研究[A];中国矿业科技文汇—2016[C];2016年
相关博士学位论文 前1条
1 余健;高分段大间距无底柱分段崩落采矿贫化损失预测与结构参数优化研究[D];中南大学;2008年
相关硕士学位论文 前8条
1 杨安国;尖山矿区挂帮矿散体流动参数和采场结构参数研究[D];昆明理工大学;2014年
2 亢亮亮;营房子银矿泥化矿体无底柱分段崩落法开采技术研究[D];东北大学;2014年
3 董文阳;基于无贫化放矿理论的岩体端壁效应实验研究[D];哈尔滨工业大学;2013年
4 张辉;基于数值模拟的大红山铁矿采场结构参数优化[D];昆明理工大学;2013年
5 黄泽;金山店铁矿无底柱分段崩落法大间距结构试验研究[D];武汉科技大学;2011年
6 江兵;大冶铁矿无底柱分段崩落法采场结构参数优化的研究[D];武汉科技大学;2008年
7 孙光华;大间距无底柱采矿新工艺放矿随机模拟研究[D];河北理工大学;2005年
8 张慎河;放矿理论及其检验[D];西安建筑科技大学;2001年
,本文编号:1546158
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1546158.html