当前位置:主页 > 科技论文 > 矿业工程论文 >

采煤机液压制动系统动态特性研究

发布时间:2018-03-01 13:22

  本文关键词: 采煤机 液压制动 动态特性 AMESim 出处:《太原科技大学》2017年硕士论文 论文类型:学位论文


【摘要】:采煤机是现代煤矿综采生产中主要的设备,是煤矿“三机”中必不可少的装备,在煤矿生产中起不可替代的作用。因为煤矿井下环境恶劣,工况复杂,采煤机液压制动系统的优劣会影响到煤矿工人的生命安全、采煤机自身的安全性以及作业的可靠性。现在针对于采煤机液压制动系统的研究比较少,大多以理论研究居多,缺乏深入的研究,因此研究采煤机液压制动系统具有重要意义。本文以太重集团煤机有限公司生产的MG750/1940-WD型采煤机液压制动系统为研究对象,针对采煤机在大倾角面工作时制动下滑的现象,进行了理论分析,对采煤机在大倾角面工作时的受力情况进行了受力分析,通过分析计算出了采煤机的制动安全系数,提出了评判采煤机制动性能的各项指标,综合分析得出影响采煤机下滑的原因是制动响应时间过长。为了分析制动响应时间对采煤机制动性能的影响,对可能影响制动响应时间的因素进行逐个分析。具体方法是:对采煤机制动系统进行了模型简化,并对简化的模型进行了数学建模,通过数学模型分析了制动系统各元件之间因果关系。在此基础上利用AMESim仿真软件对影响制动响应时间的各种因素进行了仿真验证。具体方法是:根据建立的制动系统数学模型,在AMESim仿真分析软件中建立了关键元件以及制动系统的仿真模型,为每个元件设置相应的参数,研究制动器弹簧刚度、制动器弹簧预紧力、油液中空气含量、液压管路内径、电磁换向阀阀口通流截面积以及液压管路长度对制动响应时间的影响。通过仿真得出:连接制动器和油箱之间的管路会影响制动响应时间,管路内径越大管路越长制动响应时间也越长,但管路内径不易过小,小于8mm时阻力过大,导致制动时间过长;制动器弹簧刚度不会对制动响应时间产生影响,而起作用的是制动弹簧预紧力;油液中空气含量超过0.5%也会影响制动响应时间;电磁阀口截面积越小制动响应时间越长。因此,应设计合理的管路长度和内径,选择合适的电磁换向阀以及避免油液中混入过多的空气,来达到提高制动响应时间的目的,从而提高制动性能。
[Abstract]:The shearer is the main equipment in the comprehensive mining production of modern coal mine, is the indispensable equipment in the "three machines" of the coal mine, and plays an irreplaceable role in the coal mine production, because the underground environment of the coal mine is bad and the working condition is complex, The merits and demerits of hydraulic braking system of shearer will affect the life safety of coal miners, the safety of shearer itself and the reliability of operation. Because of the lack of in-depth research, it is of great significance to study the hydraulic braking system of shearer. In this paper, the hydraulic braking system of MG750/1940-WD type shearer produced by Taizhong Group Coal Machine Co., Ltd is taken as the research object. Aiming at the phenomenon of braking sliding when the shearer is working on a large inclined plane, this paper makes a theoretical analysis, and analyzes the force acting on the shearer when the shearer is working on a large inclined plane, and calculates the braking safety factor of the shearer by analyzing and calculating. In order to analyze the influence of braking response time on the braking performance of shearer, it is concluded that the braking response time is too long. The factors that may affect the braking response time are analyzed one by one. The specific methods are as follows: the model of the braking system of the shearer is simplified, and the simplified model is modeled mathematically. The causality between the components of braking system is analyzed by mathematical model. On the basis of this, various factors affecting braking response time are verified by AMESim simulation software. The specific method is: according to the established mathematical model of braking system, The simulation model of key components and braking system is established in AMESim software. The corresponding parameters are set up for each component. The stiffness of brake spring, the pretightening force of brake spring, the air content in oil and the inner diameter of hydraulic pipe are studied. The influence of electromagnetic directional valve orifice cross section area and hydraulic pipe length on braking response time. Through simulation, it is concluded that the connection between brake and fuel tank will affect the braking response time. The larger the inner diameter of the pipe, the longer the braking response time, but the inner diameter of the pipe is not easy to be too small, the resistance is too large when the diameter is less than 8 mm, the braking time is too long, and the brake spring stiffness will not affect the braking response time. The brake spring pretightening force is acting; the air content in the oil over 0.5% will also affect the braking response time; the smaller the section area of the solenoid valve, the longer the braking response time. Therefore, reasonable pipe length and inner diameter should be designed. Choosing proper electromagnetic reversing valve and avoiding too much air in the oil can increase the braking response time and improve the braking performance.
【学位授予单位】:太原科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD421.6

【参考文献】

相关期刊论文 前10条

1 丁问司;张旭;袁林燕;;基于AMESim的交流正弦液压泵动态特性仿真分析[J];液压与气动;2013年11期

2 崔连发;;论采煤机的发展现状及前景[J];劳动保障世界(理论版);2013年10期

3 张宏宇;;煤矿综合机械化采煤工艺研究[J];中国新技术新产品;2013年04期

4 张世洪;周常飞;;薄煤层电牵引采煤机技术研究现状与发展趋势[J];煤矿机电;2013年01期

5 王振东;;煤矿综合机械化采煤工艺研究[J];科技创新与应用;2012年25期

6 刘长海;徐宏兴;王大宇;;大功率电牵引采煤机的发展概况及趋势[J];煤矿机械;2010年08期

7 谢贵君;;电牵引采煤机的现状与发展趋势[J];煤矿机械;2009年02期

8 ;Frictional heat analysis of mine hoist and numerical simulation on temperature field of gasket[J];Mining Science and Technology;2009年01期

9 ;Mine-hoist fault-condition detection based on the wavelet packet transform and kernel PCA[J];Journal of China University of Mining & Technology;2008年04期

10 张军辉;;我国煤矿采煤机的研制回顾、现状以及发展[J];煤矿机械;2008年03期

相关硕士学位论文 前10条

1 赵津;采煤机潜在故障预测和可靠性分析[D];太原理工大学;2016年

2 赵强;提升机制动系统动态特性仿真及试验研究[D];太原理工大学;2016年

3 资鹏;电牵引采煤机行走机构创新设计与评价研究[D];中北大学;2015年

4 孟凡林;采煤机截割部传动系统负载模拟及强度分析[D];辽宁工程技术大学;2013年

5 徐二宝;基于AMESim的采煤机电液比例自动调高系统研究[D];安徽理工大学;2013年

6 陈晓强;采煤机电液比例调高系统设计与仿真分析[D];安徽理工大学;2013年

7 马联伟;薄煤层采煤机可靠性与疲劳寿命研究[D];辽宁工程技术大学;2013年

8 田震;薄煤层采煤机振动特性研究[D];辽宁工程技术大学;2013年

9 胡延涛;电牵引采煤机截割恒功率调速控制系统的研究[D];辽宁工程技术大学;2013年

10 张川;采煤机变转速闭式液压牵引监控系统设计[D];安徽理工大学;2012年



本文编号:1552132

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/1552132.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a21eb***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com