柠条塔煤矿采空区积水量预测研究
本文选题:柠条塔井田 切入点:采空区积水量 出处:《西安科技大学》2017年硕士论文 论文类型:学位论文
【摘要】:在多煤层开采中,上部煤层采空区积水会严重威胁下部煤层的安全回采。如何准确预测一定时间间隔后采空区积水量就成为生产上急需解决的一大难题。本文以柠条塔井田为研究对象,建立地下水三维数值模型,采用数值模拟等方法分别对井田北翼N1205工作面和南翼S1224工作面采空区积水量进行预测研究,探讨采空区积水量的预测方法。在总结柠条塔井田矿井地质、水文地质和采矿资料的基础上,对采空区积水条件进行了分析,认为采用自然垮落法管理顶板的综采工作面采空区积水主要受充水水源、充水通道和积水空间三个因素影响。柠条塔井田采空区积水的水源主要由煤层顶板砂岩裂隙水构成,其次是大气降水、地表水体和松散含水层水。充水通道为导水冒裂带,经过计算得出2-2煤层导水冒裂带发育至基岩层中,但在考考乌素沟,石峡沟等沟谷处可以贯通地表。柠条塔煤矿采空区积水空间实际是采空区密闭墙泄水孔以下冒落岩块间空隙的体积。根据柠条塔井田南翼和北翼所处的水文地质单元,将南翼地层概化为风积砂和萨拉乌苏组潜水含水层、离石组和保德组相对隔水层、导水裂隙带以上原基岩层、导水裂隙带层和2-2煤层采空区,共5个结构层。将北翼地层概化为保德组和离石组相对隔水层、导水裂隙带以上原基岩层、导水裂隙带层和2-2煤层采空区,共4个结构层。据此概化地质模型,利用地下水模拟软件(GMS)建立了南翼和北翼的地下水数值模型。对采空区积水量预测所涉及的有关概念进行了定义,包括采空区积水岩体、积水空间、积水速度、积满水时间和积水量等参数,给出了这些参数,尤其是采空区积水量的预计方法。对柠条塔煤矿北翼N1205和南翼S1224工作面采空区积水量进行了预测,结果为:N1205工作面全密闭采空区积水空间为892125m3,可泄水采空区积水空间为41179m3,积水速度为9.33m3/h,全密闭采空区积满水需10.91年,可泄水采空区积满水需0.51年,全密闭采空区积水量为892125m3,可泄水采空区积水量为41179m3。S1224工作面全密闭采空区积水空间为1003353m3,可泄水采空区积水空间为35624m3,积水速度为124.65m3/h,全密闭采空区积满水需0.91年,可泄水采空区积满水需11.91天,全密闭采空区积水量为1003353m3,可泄水采空区积水量为35624m3。该预测结果与实际比较符合,说明该方法可以推广应用。
[Abstract]:In the multi-seam mining, Water accumulation in the goaf of the upper coal seam will seriously threaten the safe mining of the lower coal seam. How to accurately predict the amount of water stored in the goaf after a certain time interval has become a big problem that needs to be solved in production. This paper takes Caragana tower mine field as the research object. Three dimensional numerical model of groundwater is established, and the method of numerical simulation is used to predict the amount of water stored in the goaf of N1205 face and S1224 face in the north wing of the mine field. On the basis of summarizing geological, hydrogeological and mining data of Caragana korshinskii, the conditions of water accumulation in goaf are analyzed. It is considered that the water accumulation in goaf of fully mechanized mining face is mainly affected by water source, water filling passage and water accumulation space by natural caving method. The water source in the gob area of Caragana Tower is mainly composed of sandstone fissure water on top of coal seam. The second is atmospheric precipitation, surface water body and loose aquifer water. The channel of water filling is water conduction and fracture zone. By calculation, it is found that the water conductivity crack zone of 2-2 coal seam develops into bedrock, but in the Caokowusu ditch, The space of water accumulation in the goaf of Caragana Tower coal mine is actually the volume of the void between the caved rock blocks under the closed wall discharge hole in the goaf. According to the hydrogeological units in the south and north flanks of Caragana Tower mine field, The strata in the south wing are generalized to eolian sand and Sarawusu submersible aquifer, relative water-isolated layer of Lishi formation and Baode formation, original bedrock layer above water-conducting fracture zone, water-conducting fissure zone and 2-2 coal seam goaf. In this paper, the north wing strata are divided into four layers, namely, the relative water-isolated layer of Baode formation and Liishi formation, the original bedrock layer above the water-conducting fissure zone, the water-conducting fissure zone and the goaf of 2-2 coal seam. The numerical models of groundwater in the south and north wing are established by using the groundwater simulation software (GMS). The related concepts involved in the prediction of water accumulation in the goaf are defined, including the rock mass in the goaf, the space of water accumulation, the velocity of water accumulation, and so on. The parameters such as the time of water accumulation and the amount of water accumulated are given, especially the method of predicting the amount of water stored in the goaf, and the amount of water accumulated in the goaf of the North Wing N1205 and the South Wing S1224 face of Caragana Tower Coal Mine is forecasted. The results showed that the water accumulation space in the closed goaf of the working face was 892125m3, the water accumulation space in the emptying goaf was 41179m3, the water accumulation speed was 9.33m3 / h, the total closed goaf needed 10.91 years to accumulate water, and the drain goaf needed 0.51 years to fill the goaf. The amount of water accumulated in the completely closed goaf is 892125m3, the amount of water accumulated in the emptying goaf is 41179m3.S1224 working face, the water space of the fully closed goaf is 1003353m3, the water space of the emptying goaf is 35624m3, the speed of water accumulation is 124.65m3 / h, the water accumulation of the fully closed goaf needs 0.91-year. It takes 11.91 days to accumulate water in the emptying goaf, 1003353m3 m ~ 3 in the completely closed goaf and 35624m ~ 3 m ~ 3 in the emptying goaf. The prediction result is in good agreement with the actual situation, which shows that the method can be popularized and applied.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD745.2
【参考文献】
相关期刊论文 前10条
1 张涛;魏久传;秦萌;;三维渗流数值法在矿井涌水量预测的应用[J];山东煤炭科技;2015年12期
2 张立其;刘洋;方刚;;陕北浅埋煤层采空区积水下安全开采技术研究[J];煤田地质与勘探;2015年06期
3 赵春永;梅玲;党宇宁;;矿井涌水量计算方法分析[J];中国资源综合利用;2015年09期
4 李建林;昝明军;郑继东;李志强;;矿井涌水量R/S灰色预测模型[J];河南理工大学学报(自然科学版);2015年04期
5 安欣;贾进章;;矿井涌水量时间序列ARIMA预测模型[J];辽宁工程技术大学学报(自然科学版);2015年07期
6 耿志勇;;煤矿采空区积水量的测定[J];技术与市场;2014年12期
7 杨朝维;;动水补给条件下沿空掘巷探放水技术研究[J];中州煤炭;2014年10期
8 朱愿福;王长申;李彦周;潘扎荣;张亚平;;改进的灰色系统理论预测矿井涌水量[J];煤田地质与勘探;2014年04期
9 赵宝峰;;基于MATLAB模糊聚类分析法治理矿井水害[J];煤炭科学技术;2013年07期
10 段俭君;徐会军;王子河;;相关分析法在矿井涌水量预测中的应用[J];煤炭科学技术;2013年06期
相关硕士学位论文 前3条
1 韩淑新;矿井涌水对地下水流影响数值模拟研究[D];合肥工业大学;2015年
2 陈帅;采空区覆岩冒落及孔隙率分布规律研究[D];河南理工大学;2015年
3 康英;柠条塔矿井水文地质特征研究[D];西安科技大学;2014年
,本文编号:1572336
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1572336.html