受氰化钠深度抑制的黄铜矿、铁闪锌矿的活化浮选及机理研究
本文选题:黄铜矿 切入点:铁闪锌矿 出处:《江西理工大学》2015年硕士论文 论文类型:学位论文
【摘要】:黄金生产领域的氰化尾渣中含有数量可观的有价元素,资源综合回收利用潜力巨大,贵金属浸出过程中,硫化铜锌矿浮选性能变化的理论研究不够深入;活化浮选氰化尾渣时破坏氰化物,减少剧毒氰化物对环境的污染。以贵金属浸出后的氰化尾渣中硫化矿的综合回收利用为背景,选择黄铜矿、铁闪锌矿纯矿物分别进行浮选、模拟贵金属氰化浸出流程处理后浮选及活化浮选试验。通过浮选回收率差异对比分析氰化钠的抑制效果及活化剂的活化效果,寻找多种有效活化剂。借助红外光谱仪、Zeta电位仪等测试仪器,结合浮选溶液化学计算进行抑制及活化机理分析。活化剂用量不同时对黄铜矿和铁闪锌矿进行浮选动力学拟合,分析活化浮选速率差异,理论上指导黄铜矿和铁闪锌矿的分选回收。浮选试验结果表明氰化钠能强烈抑制黄铜矿和铁闪锌矿,黄铜矿消耗氰化钠的能力是铁闪锌矿的2倍以上;在有氧条件下,浸出后的黄铜矿在一定范围内有自我活化效果。电化学计算及红外测试研究表明主要抑制成分为Cu(CN)42-、Zn(CN)42-和Fe(CN)64-,在碱性条件下,其生成电位均较相应的丁基黄原酸盐低。CN-在黄铜矿、铁闪锌矿表面发生化学键合吸附。活化浮选试验得到四种有效活化剂,黄铜矿和铁闪锌矿浮选回收率随活化剂次氯酸钠和双氧水用量增加而先增后减,随焦亚硫酸钠和硫酸铜用量增加而先快速后缓慢增大。次氯酸钠、双氧水是强氧化剂,其还原电位远高于CN-的氧化电位,优先氧化CN-,再氧化硫化矿中的S。焦亚硫酸钠是强还原剂,红外光谱测试表明焦亚硫酸钠能将CN-还原成SCN-,大大减弱其与矿物表面金属离子的络合能力,丁基黄药优先吸附于矿物表面,从而活化黄铜矿和铁闪锌矿;该反应的速度慢,需活化作用时间不小于10min。Cu2+具有较弱的氧化能力,能将CN-氧化成(CN)2;硫酸铜能消耗矿浆中的难免离子CN-,故硫酸铜具有活化性能。Cu2+、Zn2+浓度相同时,Cu2+优先吸附在铁闪锌矿表面,过量的Cu2+能活化铁闪锌矿。活化剂用量适宜时黄铜矿和铁闪锌矿活化浮选速率均有KCu SO4KNa Cl OKH2O2KNa S2O5,累计浮选回收率εCu SO4εNa2S2O5εH2O2、εNa Cl O。焦亚硫酸钠作活化剂时,模型二拟合的浮选速率常数KCuKZn。活化剂硫酸铜用量1.67×10-4mol/L,黄铜矿和铁闪锌矿活化浮选动力学模型二拟合的浮选速率常数分别为15.12和1.26,浮选时间1min时,黄铜矿回收率达到91%,而铁闪锌矿只有25%。氰化尾渣中含铜或锌硫化矿其中一种,且氧化较严重时,选用焦亚硫酸钠为活化剂较佳;若黄铜矿和铁闪锌矿活化浮选分离时,使用适量硫酸铜作活化剂更佳。
[Abstract]:The cyanide tailings in gold production field contain a considerable amount of valuable elements, and the comprehensive recovery and utilization potential of resources is great. During the leaching process of precious metals, the theoretical study on the flotation performance of copper-zinc sulphide ores is not deep enough. The cyanide was destroyed in activated flotation of cyanide tailings and the environmental pollution caused by highly toxic cyanide was reduced. Under the background of comprehensive recovery and utilization of sulphide ore from cyanide tailings after noble metal leaching, chalcopyrite and marmatite pure minerals were selected for flotation, respectively. Flotation and activated flotation tests after simulated noble metal cyanide leaching process were carried out. The inhibition effect of sodium cyanide and the activation effect of activator were compared and analyzed through the difference of flotation recovery. By means of infrared spectrometer Zeta potentiometer and chemical calculation of flotation solution, the inhibition and activation mechanism were analyzed. The flotation kinetics of chalcopyrite and sphalerite was fitted with different amount of activator. The difference of activated flotation rate is analyzed and the separation and recovery of chalcopyrite and marmatite are guided theoretically. The results of flotation test show that sodium cyanide can restrain chalcopyrite and marmatite strongly, and the ability of consumption of sodium cyanide in chalcopyrite is more than 2 times that of sphalerite. Under aerobic conditions, the leaching chalcopyrite has a self-activation effect in a certain range. The electrochemical calculation and infrared test show that the main inhibitory components are CuanCNN 42-ZZN CN42- and Fetron CNN 42-, and in alkaline conditions, Its formation potential is lower than the corresponding Ding Ji xanthate. CN- is adsorbed on the surface of chalcopyrite and sphalerite, and four effective activators are obtained by activation flotation test. The flotation recovery rate of chalcopyrite and sphalerite increases first and then decreases with the increase of the amount of activator sodium hypochlorite and hydrogen peroxide, and increases rapidly and slowly with the increase of sodium pyrosulfite and copper sulfate. Sodium hypochlorite and hydrogen peroxide are strong oxidants. Its reduction potential is much higher than that of CN-. It gives priority to oxidation of CN-and reoxidation of S in sulphide ore. Sodium pyrosulfite is a strong reductant. The infrared spectra show that sodium pyrosulfite can reduce CN- to SCN-and weaken the complexation ability of CN- with metal ions on mineral surface. Ding Ji xanthate preferentially adsorbs on mineral surface, thus activating chalcopyrite and marmatite, and the reaction rate is slow. The activation time is not less than 10 min. Cu2 has weak oxidation ability and can oxidize CN-to CN-2.The copper sulfate can consume the inevitable ion CN-in the slurry, so CuSO4 has the same activity. Cu2Zn2 is preferentially adsorbed on the surface of marmatite when the concentration of Cu2Zn2 is the same. Excessive Cu2 can activate sphalerite. The activated flotation rate of chalcopyrite and marmatite is both KCu SO4KNa Cl OKH2O2KNa S2O5 when the amount of activator is suitable, and the cumulative flotation recovery is 蔚 Cu SO4 蔚 Na2S2O5 蔚 H 2O 2, 蔚 Na Cl O 2, when sodium pyrosulfite is used as activator. The flotation rate constant KCuKZn.CuKZn.The amount of activated copper sulfate 1.67 脳 10 ~ (-4) mol 路L ~ (-1), the flotation rate constants fitted by two kinetic models of activated flotation of chalcopyrite and sphalerite are 15.12 and 1.26, respectively, and the flotation time is 1 min. The recovery rate of chalcopyrite is 91%, but that of marmatite is only 25%. One of the copper or zinc sulphide ores in cyanide tailings is selected as activator when oxidation is more serious. If chalcopyrite and marmatite are separated by activated flotation, It is better to use appropriate amount of copper sulfate as activator.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD923
【相似文献】
相关期刊论文 前10条
1 余润兰,邱冠周,胡岳华,覃文庆;乙黄药在铁闪锌矿表面的吸附机理[J];金属矿山;2004年12期
2 吴伯增,邱冠周,覃文庆,陈建明;丁黄药体系铁闪锌矿的浮选行为与电化学研究[J];矿冶工程;2004年06期
3 童雄;周庆华;何剑;饶峰;;铁闪锌矿的选矿研究概况[J];金属矿山;2006年06期
4 童雄;何剑;饶峰;刘四清;周庆华;;云南都龙高铁闪锌矿的活化试验研究[J];矿冶工程;2006年04期
5 童雄;刘四清;周庆华;何剑;;含铟高铁闪锌矿的活化[J];有色金属;2007年01期
6 巨佳;王吉坤;;铁闪锌矿的浸出研究现状[J];湿法冶金;2009年04期
7 班进荣;顾帼华;胡可婷;;铁闪锌矿的Leptospirillum ferrooxidans菌浸出及电化学性能(英文)[J];Transactions of Nonferrous Metals Society of China;2013年02期
8 唐三川 ,鲍超 ,孙建鄂;铁闪锌矿氧化动力学研究[J];矿冶工程;1986年04期
9 吴志祥;;铁闪锌矿浮选中铅的回收[J];有色金属(选矿部分);1993年04期
10 朱广泽;都龙铜街铁闪锌矿的浮选研究[J];云南冶金;1995年06期
相关会议论文 前3条
1 李荣兴;俞小花;谢刚;彭建蓉;杨大锦;林艳;;从高铟高铁闪锌矿加压浸出液中萃取铟的工艺研究[A];2010年全国冶金物理化学学术会议专辑(下册)[C];2010年
2 冯林永;谢克强;杨显万;王吉坤;;铁闪锌矿氧压浸出热力学[A];2006年全国冶金物理化学学术会议论文集[C];2006年
3 李存兄;邓志敢;魏昶;徐红胜;李兴彬;李e,
本文编号:1578679
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1578679.html