地下无轨设备状态监测及故障诊断系统的研究与实现
发布时间:2018-03-08 00:14
本文选题:无轨设备 切入点:状态监测 出处:《电子科技大学》2015年硕士论文 论文类型:学位论文
【摘要】:无轨设备是在矿山矿井采矿中的主要作业设备,能适应于作业过程中恶劣的工作环境的特殊车辆。然而,目前国内研发的无轨设备的智能化和自动化程度还比较低,尤其是设备运行过程的状态监测及智能化故障诊断能力非常的薄弱。大多数设备都是采用定期和事后维修方式,而且主要依靠技术人员的经验进行设备的维护和故障排除。研究并建立可靠而有效的设备状态监测及故障诊断系统,对实现无轨设备的信息化改进具有非常重要的意义。本文针对某公司主要的无轨设备,从工程实际出发,设计并实现了地下无轨设备的状态检测及故障诊断系统。本文首先介绍了无轨设备的主要的组成结构和系统构件,分析了主要的无轨设备常见的故障类型与机理。结合无轨设备的结构特点和故障特性,综合考虑无轨设备的特点和监测需求选取了监测工况参数,并提出了系统的总体软件架构和设计方案。然后针对设备工况参数检测和特征提取问题,提出了一种基于CAN总线的分布式数据采集系统,可根据不同设备需求选配所需的数据采集模块。考虑到不同工况参数的特征不同,因此采用不同的特征提取方法,对于温度和压力等瞬时参数,主要采用基于阈值准则提取故障特征,可及时提供状态评估和报警信息;而无轨设备的发动机作为核心部件,故障特征比较复杂,其大部分故障都是由振动信号反映的。因此提出了基于EMD近似熵方法提取发动机振动信号故障特征,该方法可有效的降低噪声干扰,提高故障特征提取的准确性。之后依据无轨设备的技术要求和监测需求,综合分析所有的工况参数以提高故障诊断的准确率,采用了基于信息融合技术方法实现故障的诊断。通过信号处理方法提取所有工况参数的特征,再采用信息融合方法构建特征向量,将故障特征向量作为LSSVM的学习和测试样本,实现故障诊断和决策。此方法可提高系统的故障诊断准确性和可靠性。最后根据系统性能和要求设计并实现了无轨设备的状态监测及故障诊断系统,主要包括状态监测和报警模块、数据处理和故障诊断模块、CANOpen协议的测试模块、区域报警系统的设置和调试模块、工况参数和通道基本信息的设置和工作界面的仪表显示方式设置模块。从配置系统、参数检测系统、状态监测系统和故障诊断系统四个方面阐述了系统的软件结构和软件的设计与实现。
[Abstract]:Trackless equipment is the main working equipment in mine and mine mining, which can adapt to the bad working environment in the working process. However, the intelligence and automation of trackless equipment developed in our country are still low at present. Especially, the ability of condition monitoring and intelligent fault diagnosis is very weak. And mainly rely on the experience of technical personnel for equipment maintenance and troubleshooting, research and establish a reliable and effective equipment condition monitoring and fault diagnosis system, It is very important to realize the information improvement of trackless equipment. The condition detection and fault diagnosis system of underground trackless equipment is designed and implemented. Firstly, the main structure and system components of trackless equipment are introduced. The common fault types and mechanisms of the main trackless equipment are analyzed. Combined with the structural and fault characteristics of the trackless equipment, the monitoring operating conditions parameters are selected in consideration of the characteristics and monitoring requirements of the trackless equipment. Then, a distributed data acquisition system based on CAN bus is proposed to detect and extract the operating parameters of the equipment. The data acquisition module can be selected according to the requirements of different equipments. Considering the different characteristics of the parameters under different operating conditions, different feature extraction methods are adopted, such as temperature and pressure, etc. Based on threshold criterion, fault features can be extracted in time to provide state evaluation and alarm information, while the engine of trackless equipment is the core component, and the fault features are complex. Most of the faults are reflected by vibration signals. Therefore, a method based on EMD approximate entropy is proposed to extract the fault features of engine vibration signals, which can effectively reduce the noise interference. Improve the accuracy of fault feature extraction. Then according to the technical requirements and monitoring requirements of trackless equipment comprehensive analysis of all operating conditions parameters to improve the accuracy of fault diagnosis. The fault diagnosis is realized based on information fusion technology. The feature vectors of all operating conditions are extracted by signal processing method, and then the feature vectors are constructed by information fusion method. The fault feature vectors are used as learning and testing samples of LSSVM. This method can improve the accuracy and reliability of fault diagnosis. Finally, according to the performance and requirement of the system, the condition monitoring and fault diagnosis system of trackless equipment is designed and realized. It mainly includes status monitoring and alarm module, data processing and fault diagnosis module, testing module of CANOpen protocol, setting and debugging module of regional alarm system, Working condition parameters and basic information of the channel and the working interface of the instrument display mode setting module. From the configuration system, parameter detection system, The software structure of the system and the design and implementation of the software are described in four aspects: the condition monitoring system and the fault diagnosis system.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD52
【参考文献】
相关期刊论文 前1条
1 李凌均,张周锁,何正嘉;支持向量机在机械故障诊断中的应用研究[J];计算机工程与应用;2002年19期
相关硕士学位论文 前1条
1 潘兵;矿运卡车液压系统状态监测及故障诊断系统的研究[D];电子科技大学;2006年
,本文编号:1581580
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1581580.html