8.2米大采高液压支架有限元分析及轻量化研究
本文选题:液压支架 切入点:有限元分析 出处:《山东科技大学》2017年硕士论文 论文类型:学位论文
【摘要】:液压支架是综采工作面不可或缺的配套设备,由于其受力复杂,传统的样机试验受测点数目与加工质量的影响,难以全面反映液压支架的应力分布情况,因此针对液压支架整架及主要承载结构件进行有限元分析十分必要。针对液压支架的轻量化研究是在结构层面对支架做适当优化,使用降低钢材用量的方法达到减重的目的,同时在保证支架安全使用的前提下,最大限度地增强其支撑功能。轻量化设计一方面能够提高支架运输效率,另一方面也能减少制造成本,在竞争日益激烈的煤机市场增强产品竞争力。本课题完成了 8.2米大采高液压支架的设计以及主要承载结构件的建模,在PRO/E中完成了整架装配和干涉检验,基于PRO/E和Adams完成了支架的运动仿真,仿真结果验证了支架设计建模的准确性。使用有限元软件ANSYS workbench对液压支架进行网格划分,设置完材料参数与边界条件后对支架做强度分析。液压支架5种最危险工况下的受力情况分别为顶梁两端加载、顶梁偏心加载、底座两端加载、底座扭转加载、顶梁扭转加载与底座两端同时加载。对支架的有限元分析可以确定其在5种最危险工况下的受力情况,为支架的轻量化研究提供了数据支撑。基于结构优化中的拓扑优化对液压支架顶梁和掩护梁进行轻量化设计,找出最佳材料布置方案,在液压支架能够满足不同工况下使用强度要求的前提下通过材料选择减轻重量,拓扑优化后液压支架的质量减轻了1.59%,在拓扑优化的基础上对液压支架的承载构件顶梁、掩护梁、前连杆、后连杆、底座使用ANSYS workbench软件进行尺寸优化,使得液压支架在最危险的使用工况下仍然能够正常使用同时尽可能地减轻液压支架重量,进而达到节省材料和减少制造成本的目的,尺寸优化后液压支架重量较优化前减轻1.9%。经过拓扑优化和尺寸优化后,液压支架质量总共减少了 1737kg,相比优化前质量减轻了 3.46%。对8.2米大采高液压支架的分析和优化结果表明针对液压支架的有限元分析与轻量化研究方法能够弥补液压支架传统研发手段的诸多不足,能够为今后液压支架的研发、制造及结构改进提供参考。
[Abstract]:Hydraulic support is an indispensable supporting equipment in fully mechanized mining face. Because of its complex force, the traditional prototype test is affected by the number of measuring points and processing quality, so it is difficult to fully reflect the stress distribution of hydraulic support. Therefore, it is very necessary to analyze the whole frame of the hydraulic support and the main bearing structure parts by finite element method. The lightweight research on the hydraulic support is to optimize the support properly at the structural level and to reduce the steel content to achieve the purpose of weight reduction. At the same time, under the premise of ensuring the safe use of the support, the support function can be maximized. Lightweight design can improve the transport efficiency of the support, on the other hand, it can also reduce the manufacturing cost. In the increasingly competitive coal machine market to enhance the competitiveness of products. This project has completed the design of 8.2-meter mining height hydraulic support and the modeling of main load-bearing structural parts, and has completed the whole assembly and interference inspection in PRO/E. Based on PRO/E and Adams, the movement simulation of the support is completed, and the simulation results verify the accuracy of the support design modeling. The finite element software ANSYS workbench is used to mesh the hydraulic support. After setting the material parameters and boundary conditions, the strength of the support is analyzed. The stress conditions of the hydraulic support under the five most dangerous conditions are: the top beam loading at both ends, the top beam eccentric loading, the base end loading, the base torsion loading, The torsional load of the top beam is loaded at the same time as the two ends of the base. The finite element analysis of the support can determine its stress under the five most dangerous conditions. Based on the topology optimization in structural optimization, the top beam and cover beam of hydraulic support are designed lightweight, and the best material layout scheme is found out. On the premise that the hydraulic support can meet the requirements of strength under different working conditions, the weight can be reduced by material selection, and the quality of the hydraulic support after topology optimization is reduced by 1.59. On the basis of topology optimization, the top beam and cover beam of the bearing member of the hydraulic support are optimized. The front connecting rod, rear connecting rod and base are optimized by ANSYS workbench software, so that the hydraulic support can still be used normally under the most dangerous working conditions and the weight of the hydraulic support can be reduced as much as possible. In order to save material and reduce manufacturing cost, the weight of hydraulic support after dimension optimization is 1.9 less than that before optimization. After topology optimization and dimension optimization, The mass of hydraulic support has been reduced by 1737 kg, which is 3.46% less than that before optimization. The analysis and optimization results of 8.2 meters high mining hydraulic support show that the finite element analysis and lightweight research method for hydraulic support can make up for the fluid. The shortcomings of the traditional research and development methods of the pressure bracket, It can provide reference for future research and development, manufacture and structure improvement of hydraulic support.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD355.4
【参考文献】
相关期刊论文 前10条
1 闫志琴;刘燕萍;;基于ANSYS的放顶煤液压支架有限元仿真分析[J];煤炭技术;2016年08期
2 赵峰;;ZY21000型8m超大采高液压支架静力及疲劳分析[J];煤矿机械;2016年07期
3 王刚;张f^;王艳燕;朱琛;;基于ANSYS Workbench的液压支架Y形密封圈有限元分析[J];煤炭工程;2015年10期
4 商献伟;;基于ANSYS的ZY7200/18/40液压支架仿真分析[J];煤矿机械;2015年09期
5 牛艳奇;刘伟;张德生;;ZTC 16000/29/45型液压支架套筒机构有限元分析[J];矿山机械;2015年08期
6 李奇;李祥松;;矿用液压支架的整机有限元分析与加载试验[J];机械制造;2015年05期
7 田大龙;张保成;李瑰;马学军;;基于ABAQUS的液压支架底座尺寸优化设计[J];煤矿机械;2015年05期
8 高有进;梁承元;谢德东;杨文明;陈学东;;超高端液压支架立柱强度性能有限元分析[J];中国煤炭;2015年04期
9 李亚飞;李炳文;张席;;基于遗传算法的超静定液压支架顶梁优化设计[J];煤矿机械;2015年04期
10 李宁宁;张定堂;贾娅娟;;不同结构形式顶梁对顶板支护性能的影响分析[J];煤炭技术;2015年04期
相关博士学位论文 前1条
1 郭立群;商用车车架拓扑优化轻量化设计方法研究[D];吉林大学;2011年
相关硕士学位论文 前10条
1 唐琨;充填综采液压支架底座强度分析及其结构优化[D];中国矿业大学;2014年
2 王志龙;桁架式桥梁检测车臂架系统结构分析及优化设计[D];西南交通大学;2014年
3 苟晓明;煤矿用液压支架的轻量化设计与研究[D];重庆理工大学;2014年
4 董营;两柱掩护式放顶煤液压支架仿真及有限元分析[D];安徽理工大学;2013年
5 李慧宇;基于RSM的液压支架结构优化设计研究[D];郑州大学;2013年
6 赵彬;煤矿液压支架四连杆机构的遗传优化及软件设计[D];华中科技大学;2011年
7 张怡馨;液压支架应力分析研究[D];西安科技大学;2011年
8 张丹;基于虚拟样机的液压支架强度试验方法研究[D];西安科技大学;2010年
9 刘欣丽;液压支架双伸缩立柱承载特性研究[D];山东科技大学;2010年
10 曹方梅;ZY8800/22/45D型液压支架有限元分析及强度优化[D];电子科技大学;2008年
,本文编号:1592732
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1592732.html