当前位置:主页 > 科技论文 > 矿业工程论文 >

基于组合客观赋权法的厚松散层采动水砂突涌危险性评价

发布时间:2018-03-13 17:14

  本文选题:厚松散含水层 切入点:水砂突涌 出处:《山东科技大学》2017年硕士论文 论文类型:学位论文


【摘要】:随着煤炭资源的日趋紧张,水体下采煤逐渐成为能源开发的热点问题。尤其是在中国中东部地区,浅部上覆厚松散含水层,在采掘过程中上覆岩层发生水砂突涌的灾害经常发生,再加上煤矿水砂突涌信息存在的数据复杂、非线性、样本小的特点,危险性评价和预测极其困难,给矿井的安全生产带来了巨大的威胁,严重制约着工业的发展。为了保证煤矿的安全开采,文中依靠MATLAB强大的数据处理和编程能力,以葛亭煤矿3煤层为例,对其上覆岩层水砂突涌进行风险评价。首先收集研究区域的煤矿地质、水文地质、工程地质资料,并用直流电法勘探、三维地震勘探、可控源音频大地电磁法勘探顶板岩层充水性能,重点分析了研究区域含水层、隔水层的分布情况及富水性、各断层的富水性,确定断层的分布情况、发育情况。然后从理论上对顶板阻水机理进行分析,探索顶板岩层阻水性能的影响因素,并进行灾害形成与多种影响因素相关性分析。对采场覆岩破坏机理进行研究,分析工作面开采对覆岩的破坏特征。运用FLAC3D模拟厚松散层薄基岩下煤层开采过程,对开挖过程中上覆岩层的破坏规律及机理进行分析,确定去上覆岩层发生水砂突涌的影响因素,并进行多种影响因素与上覆岩层水砂突涌相关性分析。最后以MATLAB2012a为平台,构建基于层次分析水砂突涌主控因素确定模型,并结合YAAHP灵敏度分析,选取出厚松散层薄基岩下水砂突涌危险性评价指标。通过MATLAB2012a构建基于主成分-熵权危险性评价模型,确定出评价指标的权重。引入图像分割中的Ostu算法,确定厚松散层水砂突涌危险性阈值。然后根据模型计算的结果,进行危险性分区。最后将模型设计成系统应用到煤矿实际中,为同等地质条件下采煤提供危险性评价和预测。经过分析得到危险分区划分如下:研究目标的危险区域和较危险区域主要集中在钻孔1号、钻孔9~14号、钻孔32~33号、钻孔38号所在的区域,此部分位于煤层的的西北、西南、北部区域;安全区域和较安全区域主要集中在钻孔3~4、6~9号、15~30号、34~37号所在的区域,此部分位于煤层的东部、东西部区域;过渡区域主要集中在为钻孔5号、17~23号、39号,此部分主要为煤层的中部区域。
[Abstract]:With the increasing shortage of coal resources, coal mining under water has gradually become a hot issue in energy development. Especially in central and eastern China, shallow overlying thick and loose aquifers, In the process of mining, the disaster of overlying strata with water and sand outburst often occurs. In addition, because of the complex data, nonlinear and small sample data, it is very difficult to evaluate and predict the risk. In order to ensure the safe mining of coal mine, this paper relies on the powerful data processing and programming ability of MATLAB, taking the coal seam No. 3 of Geting Coal Mine as an example. The risk assessment of water and sand outburst of overlying strata is carried out. Firstly, the data of coal mine geology, hydrogeology and engineering geology in the study area are collected, and the data are explored by direct current method and 3D seismic exploration. The water-filling performance of roof strata is explored by controllable source audio frequency magnetotelluric method. The distribution and water enrichment of aquifer and water barrier layer in the study area, the water-rich property of each fault, and the distribution of faults are analyzed emphatically. Then the mechanism of roof water resistance is analyzed theoretically, and the influencing factors of water resistance of roof strata are explored, and the correlation analysis between disaster formation and various influencing factors is carried out, and the failure mechanism of overburden rock in stope is studied. The failure characteristics of overburden strata caused by mining face are analyzed. FLAC3D is used to simulate the mining process of coal seams under thick loose strata and thin bedrock, and the failure law and mechanism of overlying strata during excavation are analyzed. The influencing factors of water and sand outburst in overlying strata are determined, and the correlation analysis between various influencing factors and water and sand outburst in overlying strata is carried out. Finally, based on the MATLAB2012a platform, the determination model of the main control factors of water sand surge is constructed based on the hierarchical analysis. Based on the sensitivity analysis of YAAHP, the risk evaluation index of sand outburst in thick and thin bedrock is selected. Based on principal component entropy weight risk assessment model, the weight of evaluation index is determined by MATLAB2012a, and the Ostu algorithm in image segmentation is introduced. The hazard threshold of water and sand burst in thick loose bed is determined. Then, according to the results of model calculation, the hazard zoning is carried out. Finally, the model is designed to be applied to coal mine practice. It is concluded that the dangerous area and the more dangerous area of the research target are mainly concentrated in borehole No. 1, borehole 9~ 14, borehole 32- 33, through analysis and prediction for coal mining under the same geological conditions. Borehole No. 38 is located in the northwest, southwest and northern regions of coal seam, the safety area and the safer area are mainly located in the area where borehole No. 3Y4Y6- 9 ~ 15-30, No. 34 ~ 37, is located in the east and west of the coal seam. The transition area is mainly located in No. 17 ~ 23 and 39 of borehole No. 5, and this part is mainly the middle part of coal seam.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD745

【参考文献】

相关期刊论文 前10条

1 邵银川;张承斌;;突水灾害性流量阈值预警的研究[J];科技视界;2016年16期

2 褚建伟;;浅析煤矿回采巷道矿山压力控制与支护[J];化工管理;2015年06期

3 王家臣;杨敬虎;;水沙涌入工作面顶板结构稳定性分析[J];煤炭学报;2015年02期

4 彭赐灯;;矿山压力与岩层控制研究热点最新进展评述[J];中国矿业大学学报;2015年01期

5 冯宝俊;刘敦文;褚夫蛟;;基于PSO-SVM模型的隧道水砂突涌量预测研究[J];中国安全生产科学技术;2014年07期

6 张宏伟;朱志洁;霍利杰;陈蓥;霍丙杰;;特厚煤层综放开采覆岩破坏高度[J];煤炭学报;2014年05期

7 李远晓;;矿井水文智能监测系统的设计与实现[J];河南科技;2013年11期

8 刘双跃;陈丽娜;王娟;王丹;江飞;;基于模糊聚类分析和模糊模式识别的煤层底板突水区域预测[J];矿业安全与环保;2013年02期

9 孟召平;高延法;卢爱红;王睿;乔旭;黄成玉;;第四系松散含水层下煤层开采突水危险性及防水煤柱确定方法[J];采矿与安全工程学报;2013年01期

10 武强;张波;赵文德;刘守强;;煤层底板突水评价的新型实用方法Ⅴ:基于GIS的ANN型、证据权型、Logistic回归型脆弱性指数法的比较[J];煤炭学报;2013年01期

相关博士学位论文 前3条

1 张乐中;煤矿深部开采底板突水机理研究[D];长安大学;2013年

2 王晓振;松散承压含水层下采煤压架突水灾害发生条件及防治研究[D];中国矿业大学;2012年

3 尹增德;采动覆岩破坏特征及其应用研究[D];山东科技大学;2007年

相关硕士学位论文 前7条

1 杨胜;潘谢矿区深部煤层开采水文工程地质测试与条件分析[D];安徽理工大学;2016年

2 史向东;煤巷复合顶板变形破坏机理及支护技术研究[D];西安科技大学;2014年

3 刘成明;隧道水砂突涌灾害及其治理方法的研究[D];重庆交通大学;2013年

4 王楷;基于事故树分析的压力管道风险评价方法研究[D];武汉理工大学;2009年

5 张雁;防止煤层顶板水溃入矿井的预警系统研究[D];煤炭科学研究总院;2008年

6 马文明;基于主成分分析法和熵值法的我国指数基金综合评价[D];中南大学;2007年

7 张玉军;铁北煤矿松软砂岩含水层下综放开采覆岩破坏及溃砂预测研究[D];煤炭科学研究总院;2005年



本文编号:1607342

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/1607342.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6c0bf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com