矿山边坡变形监测数据的高斯过程智能分析与预测
本文选题:矿山边坡 切入点:变形监测 出处:《太原理工大学》2016年博士论文
【摘要】:矿产资源开采引发的地表塌陷、崩塌、地裂缝和地面沉降等矿山灾害给人类的生命财产安全造成严重的威胁,集成多传感器的自动化、智能化监测系统是矿山地面灾害监测的发展方向。以中煤平朔井工二矿边坡(简称为二号井边坡)自动化监测系统作为研究案例,应用高斯过程(Gaussian Process,简称GP)理论研究变形数据智能分析方法和预测模型,据之对矿山地面灾害进行防治提供科学依据。将这种研究成果结合自动化、智能化监测技术应用于矿山地面灾害监测具有广阔的应用前景。监测数据的可靠性是变形监测分析和预测的基础,针对原始观测数据可能存在的异常值,提出的完整搜索估计法(Full Search Estimation,简称FSE)能够实现多维异常数据定位、估值和修正:根据异常数据影响验后方差这一基本思想,设计了多维异常数据定位搜索算法,在算法执行的过程中能够自动生成包含异常数据位置的定位矩阵,同时给出了动态阈值计算公式用于判断搜索是否结束;应用可靠性理论结合最小二乘方法推证了异常数据的估值和修正方程。分别以测量机器人异常数据探测和矿山坐标转换参数可靠性求解为例对FSE进行实证分析,结果表明FSE具有较好的抗差能力。边坡变监测过程中受外界环境及施工作业等因素的影响有时造成数据缺失,需要应用时空插值方法对缺失数据加以插补形成完整的时空序列数据。通过研究高斯过程回归(Gaussian Process Regression,简称GPR)在时间域上插值的样本数量,给出GPR在时间域上的一维插值方法和步骤,实验证明GPR在时间域上可以适应线性和非线性插值;按照空间插值样本数据选择的一般原则,进一步研究了基于gpr的空间插值方法;顾及监测数据的时空关联性,利用gpr在时间域和空间域插值输出的验后方差作为定权因子,给出了基于gpr的时空插值的计算公式,并用交叉验证法证明了gpr时空插值的可行性。对变形区域进行时空位移特征分析是变形数据分析的一项主要内容,就描述监测点三维位移特征常用的绝对指标进行了论述,但仅使用绝对指标凸显不出监测点相对稳定状态。将短期位移速率和累积位移速率的比值定义为累积位移速率比作为一种相对指标,使用累积位移速率比的大小和符号可以简单直观的分析监测点的相对稳定状态。通过计算分析一段时间内的累积位移速率比,依据3σ准则将监测点的稳定状态分为四个级别,即稳定、较稳定、不稳定和极不稳定。单独分析监测点的变形特征难以从整体上掌握变形区域的时空演化趋势和变形规律。为此,在gpr时空插值的基础上研究了基于gpr变形趋势面模型建模方法和流程,以三维累积位移量作为分析对象,构建了二号井边坡的变形趋势面模型,以此来分析其变形的时空演化过程;应用fse提取累积位移速率比的离群值,并将提取结果赋予高斯过程分类(gaussianprocessclassification,简称gpc)标志,进而给出基于gpc变形区域局部稳定性分析方法和流程,以累积位移速率比作为分析对象,对二号井边坡的局部稳定性进行整体分析。监测点在发生变形的过程中经常表现出明显的非线性特征,利用gpr超参数自适应求解、输出结果具有概率意义的优点研究了变形智能预测模型。鉴于gpr的核函数对预测性能有很大影响,应用核函数相加方式得到与变形曲线特点相吻合的组合式核函数“matern32+se”;考虑到监测数据的不断更新和累积,为保持超参数与训练样本集的一致性,研究了“递进~截尾式”超参数动态更新模式和gpr最佳训练样本数量确定方法;在此基础上建立了以时间作为输入项的GPR监测点时间驱动智能预测模型(GPR-TIPM)和以历史数据作为输入项的GPR监测点数据驱动智能预测模型(GPR-DIPM)。分别将两种模型应用于二号井边坡进行中短期变形预测,实验结果表明两种预测模型均取得了较为理想的效果,GPR-TIPM的预测性能总体上优于GPR-DIPM。通过GPR-TIPM模型与经典的AR(p)和GM(1,1)模型的实验对比分析,结果表明GPR-TIPM的预测精度明显提高。最后部分设计了GP变形监测数据处理软件原型系统架构,并以此架构为导向,根据文中提到的模型和算法用Matlab和C#语言分别实现了服务端近实时数据处理系统和GIS客户端可视化在线分析系统。
[Abstract]:The surface subsidence caused by exploitation of mineral resources, collapse, ground fissure and ground subsidence of mine disaster caused a serious threat to human life and property safety, multi sensor integrated automation, intelligent monitoring system is the development direction of mining ground disaster monitoring. The slope coal underground mine two Ping Shuo (referred to as No. two well slope the automatic monitoring system) as a case study, the application of Gauss (Gaussian Process, referred to as GP) intelligent data analysis method and prediction model of deformation theory, according to the control of mining ground disaster to provide a scientific basis. The research achievements of the combination of automation, intelligent monitoring technology application in mining ground disaster monitoring has broad application prospects. The reliability of the monitoring data is the basis of the analysis and forecasting of deformation, the abnormal value of raw data may exist, proposed a complete search. Meter method (Full Search Estimation, referred to as FSE) can realize multidimensional anomaly positioning, estimation and correction: according to the basic idea of abnormal data influence posterior variance, design a multidimensional anomaly positioning search algorithm, can automatically generate the location matrix including abnormal data in the process of implementation of the location algorithm, and dynamic threshold formula to determine whether the end of the search is given; the application of the reliability theory combined with the least squares method to deduce abnormal data estimation and correction equation. By measuring robot abnormal data detection and mine coordinate conversion parameters reliability for the empirical analysis of FSE, the results show that FSE has good robust ability. The influence of outside environment and construction work the factors such as slope deformation monitoring in the process sometimes resulting in missing data, requires the application of spatio-temporal interpolation method for missing data to be inserted Fill space complete sequence data. Through the study of Gauss (Gaussian Process Regression, the regression process referred to as GPR) the number of sample interpolation in time domain, GPR is given in the time domain of the one-dimensional interpolation method and steps, experiments show that GPR can adapt to the linear and nonlinear interpolation in time domain; according to the general principles of spatial interpolation samples data selection, further study of the spatial interpolation method based on GPR; take into account the spatio-temporal correlation of monitoring data, the use of GPR in time domain and space domain interpolation output posterior variance as weighting factor, calculation formula of spatio-temporal interpolation based on GPR is proposed, and the feasibility of GPR temporal interpolation is proved by cross validation method analysis of characteristics of time and space. The displacement deformation area is a major content of deformation data analysis, describe the absolute index of three-dimensional displacement monitoring points of common features were discussed , but only use the absolute index not highlight the relatively stable state monitoring points. The short-term displacement rate and cumulative displacement rate is defined as the ratio of cumulative displacement ratio as a relative index, use the sign and magnitude of the cumulative displacement rate ratio of the monitoring points can be analyzed a simple relatively stable state. Through the analysis of cumulative displacement rate the time ratio calculation, on the basis of the 3 Sigma standards monitoring points in the steady state is divided into four levels, namely, stable, stable, unstable and very unstable. A separate analysis of deformation characteristics of monitoring points to the overall evolution of regional spatial and temporal trends of the palm grip and deformation deformation. Therefore, based on GPR the spatio-temporal interpolation of GPR deformation trend surface modeling method and process based on three-dimensional cumulative displacement as the analysis object, construct the deformation trend of No. two well slope surface model, which is used to divide Analysis of the spatial and temporal evolution of the deformation; FSE is used to extract the outlier cumulative displacement rate ratio of the value, and the result of the extraction process to Gauss classification (gaussianprocessclassification, referred to as GPC), and then gives the method and process of analysis of local stability of regional GPC deformation based on the cumulative displacement speed ratio as the research object, the local stability of slope No. two well the overall analysis. Monitoring points during a deformation process often exhibit obvious nonlinear characteristics, super parameter adaptive solution by GPR, the output and the probabilistic prediction model of intelligent deformation. In view of the kernel function of GPR has great influence on the prediction performance, application of nuclear function additive combined nuclear way function "is consistent with the characteristics of deformation curve of matern32+se; taking into account the monitoring data update and accumulation, in order to maintain the hyper parameters and training The consistency of training sample set, on the "progressive censoring ~" super dynamic parameter update mode and GPR optimal method to determine the number of training samples; set up on the basis of the GPR monitoring point in time as the time of entry driven intelligent prediction model (GPR-TIPM) and GPR based on historical data as input data driven monitoring points intelligent prediction model (GPR-DIPM) respectively. The two models applied to No. two well in the short term the slope deformation prediction, the experimental results show that the two models have achieved satisfactory effect, the prediction of GPR-TIPM overall performance is better than that of GPR-DIPM. through the GPR-TIPM model and the classic AR (P) and GM (1,1) analysis experiment comparison of model, results show that the prediction accuracy of GPR-TIPM is obviously improved. Finally a prototype software system architecture of data processing of deformation monitoring of GP, and this architecture oriented, according to the mentioned in this paper The model and algorithm use Matlab and C# language to implement the server near real-time data processing system and the GIS client visual online analysis system.
【学位授予单位】:太原理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TD325.4
【相似文献】
相关期刊论文 前8条
1 任彦荣;陈绍成;邹晓川;田菲菲;周鹏;;采用高斯过程模拟预测域/肽识别和相互作用[J];中国科学:化学;2012年08期
2 王鑫;李红丽;;苯酚含量预测的高斯过程回归模型[J];自动化仪表;2014年05期
3 李雅芹;杨慧中;;基于仿射传播聚类和高斯过程的多模型建模方法[J];计算机与应用化学;2010年01期
4 王华忠;;一种基于高斯过程的非线性PLS建模方法[J];华东理工大学学报(自然科学版);2007年05期
5 邵建新;袁慎芳;张华;邱雷;袁江;;基于高斯过程的疲劳裂纹长度评定方法研究[J];仪器仪表学报;2014年03期
6 刘开云;刘保国;徐冲;;基于遗传 组合核函数高斯过程回归算法的边坡非线性变形时序分析智能模型[J];岩石力学与工程学报;2009年10期
7 张相胜;王凯;;高斯过程集成算法的发酵过程软测量建模[J];计算机工程与应用;2011年33期
8 ;[J];;年期
相关会议论文 前5条
1 刘信恩;肖世富;莫军;;用于不确定性分析的高斯过程响应面模型设计点选择方法研究[A];中国计算力学大会'2010(CCCM2010)暨第八届南方计算力学学术会议(SCCM8)论文集[C];2010年
2 刘冬;张清华;;基于高斯过程的精密卫星钟差加密[A];第二届中国卫星导航学术年会电子文集[C];2011年
3 李雅芹;杨慧中;;一种基于仿射传播聚类和高斯过程的多模型建模方法[A];2009中国过程系统工程年会暨中国mes年会论文集[C];2009年
4 赵级汉;张国敬;姜龙;魏巍;;基于叠加高斯过程的数字噪声产生方法FPGA实现[A];第二十四届全国空间探测学术交流会论文摘要集[C];2011年
5 何志昆;刘光斌;姚志成;赵曦晶;;基于高斯过程回归的FOG标度因数温度漂移建模新方法[A];第25届中国控制与决策会议论文集[C];2013年
相关博士学位论文 前5条
1 王建民;矿山边坡变形监测数据的高斯过程智能分析与预测[D];太原理工大学;2016年
2 潘伟;基于高斯过程的高炉炼铁过程辨识与预测[D];浙江大学;2012年
3 贺建军;基于高斯过程模型的机器学习算法研究及应用[D];大连理工大学;2012年
4 夏战国;基于高斯过程的提升机轴承性能评测方法研究[D];中国矿业大学;2013年
5 赵伟;复杂工程结构可靠度分析的高斯过程动态响应面方法研究[D];广西大学;2014年
相关硕士学位论文 前10条
1 李红丽;回归分析中的贝叶斯推断技术的研究[D];江南大学;2015年
2 李励耘;基于高斯过程的抓取规划方法研究[D];哈尔滨工业大学;2015年
3 王雪茹;基于高斯过程的风电机组部件建模与监测研究[D];华北电力大学;2015年
4 于立鑫;基于高斯过程—差异进化算法的隧道施工多元信息反分析研究[D];大连海事大学;2015年
5 戈财若;基于高斯过程的高光谱图像分类算法研究[D];东华理工大学;2015年
6 叶婧;基于高斯过程回归的锂电池数据处理[D];北京交通大学;2016年
7 申倩倩;基于高斯过程的在线建模问题研究[D];华南理工大学;2011年
8 朱江;单任务以及多任务稀疏高斯过程[D];华东师范大学;2014年
9 黄荣清;基于稀疏高斯过程回归的半监督分类的序贯训练方法[D];华东师范大学;2012年
10 魏三喜;基于高斯过程的分类算法及其应用研究[D];华南理工大学;2012年
,本文编号:1665133
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1665133.html