当前位置:主页 > 科技论文 > 矿业工程论文 >

基于LabVIEW矿井风机远程故障诊断系统研究

发布时间:2018-04-03 16:07

  本文选题:矿井风机 切入点:远程故障诊断 出处:《华北理工大学》2015年硕士论文


【摘要】:矿井风机是确保矿井通风正常,避免瓦斯等有毒有害气体积存,保障安全生产的关键设备之一。传统方式通常采用定期维修方式以保证其良好的运行状态,但是该种方式易造成维修过剩或维修不足,难以适应故障的随机性,一定程度上造成人力、物力、财力的损失。故障监测与诊断技术的出现,实现了按状态维修,避免了定期维修的问题。随着网络技术的发展,故障监测与诊断技术实现了远程化。基于此,研究并开发了矿井风机远程故障诊断系统。以GAF型矿井风机为研究对象,对风机振动机理和常见故障展开研究,分析归纳了风机故障征兆。利用传感器技术、计算机技术、网络技术、数据库技术,研究设计了一套C/S结构的远程故障诊断系统,该系统由本地端、远程端和服务器端组成,硬件系统还包括振动速度传感器、霍尔传感器、信号采集卡等,完成了系统软硬件设计,实现了信号采集控制、实时监测、分析诊断、信息管理和远程通信等功能。系统可进行风机振动信号实时采集,设备运行状态动态监测,设备预报警值和停机范围值的设置、显示和报警提示;建立了有线通讯网络,利用共享变量技术共享数据信息,实现异地实时监测与诊断;在此基础上,针对风机故障的多重性提出了一种基于层次分析法的多重故障诊断方法;利用该方法实现了风机故障的模糊诊断,给出了不同故障可能发生的概率。针对复杂信号提出了一种EMD-FFT联合分析方法,应用此方法有效的滤除了高频干扰信号,提取出了故障频率信号。在Lab VIEW环境下设计了系统各功能模块,并进行各模块逻辑关联,完成了多目标诊断算法和人机交互界面的设计;在Access环境下构建了系统数据库;用Matlab实现了EMD-FFT联合分析方法。
[Abstract]:Mine fan is one of the key equipments to ensure the normal ventilation, avoid the accumulation of poisonous and harmful gases, and ensure the safety of production.The traditional way usually adopts the regular maintenance method to ensure its good running condition, but this kind of way is easy to cause the maintenance surplus or the maintenance insufficient, is difficult to adapt to the fault randomness, causes the manpower, the material resources and the financial resources loss to a certain extent.The emergence of fault monitoring and diagnosis technology realizes the maintenance according to the condition and avoids the problem of regular maintenance.With the development of network technology, fault monitoring and diagnosis technology realizes remote.Based on this, the remote fault diagnosis system of mine fan is studied and developed.Taking the GAF mine fan as the research object, the vibration mechanism and common faults of the fan are studied, and the fault symptoms of the fan are analyzed and summarized.Using sensor technology, computer technology, network technology and database technology, a set of remote fault diagnosis system with C / S structure is designed. The system is composed of local end, remote end and server side.The hardware system also includes vibration speed sensor, Hall sensor, signal acquisition card and so on. The hardware and software of the system are designed, and the functions of signal acquisition and control, real-time monitoring, analysis and diagnosis, information management and remote communication are realized.The system can collect the vibration signal of fan in real time, dynamically monitor the running state of the equipment, set up the pre-alarm value and stop range value of the equipment, display and alarm the warning, set up the wired communication network, and share the data information by using the shared variable technology.On the basis of this, a multi-fault diagnosis method based on analytic hierarchy process (AHP) is proposed, and the fuzzy diagnosis of fan fault is realized by this method.The probability of different faults is given.A EMD-FFT joint analysis method for complex signals is proposed. The method is used to filter out the high frequency interference signals and extract the fault frequency signals.The function modules of the system are designed under the environment of Lab VIEW, and each module is logically associated, the multi-objective diagnosis algorithm and the man-machine interface are designed, the database of the system is constructed under the environment of Access, and the joint analysis method of EMD-FFT is implemented by Matlab.
【学位授予单位】:华北理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD635

【参考文献】

相关期刊论文 前5条

1 张远军;;风机故障机理及诊断方法[J];包钢科技;2009年04期

2 苏咏梅;王振宇;;旋转机械常见故障机理研究[J];长江大学学报(自然科学版)理工卷;2009年04期

3 卿宇搏;莫学芳;吴上海;;故障诊断技术综述及发展趋势[J];中国储运;2012年11期

4 王文利,段宝岩,刘宏;基于网络的机械设备远程监测与故障诊断[J];机械工业自动化;1999年04期

5 张晓彤,徐金梧,杨德斌,屈蓉;基于Internet的设备远程诊断系统实现技术研究[J];冶金设备;2001年01期

相关硕士学位论文 前2条

1 冯华光;基于小波神经网络的矿井局部通风机故障检测与诊断研究[D];西安科技大学;2008年

2 夏志勇;远程故障诊断系统中的诊断策略研究[D];华中科技大学;2007年



本文编号:1705919

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/1705919.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a24d6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com