当前位置:主页 > 科技论文 > 矿业工程论文 >

大功率井—地电磁发射机远程外控技术研究

发布时间:2018-04-07 17:58

  本文选题:频率域电磁发射机 切入点:DDS 出处:《中国地质大学(北京)》2017年硕士论文


【摘要】:井-地电磁勘探是一种有效的金属矿勘查方法,利用矿区己有的矿洞与巷道,采用井中发射、地表接收的方法,能有效地避免地表电磁干扰,增加勘探的精度。相对于传统的电磁发射机,本课题设计的井-地电磁发射机,采用了分体式远程控制的方案,即将发射机的控制模块与主回路分开,通过多芯屏蔽线缆连接。这种做法有诸多优点,其中最显著的是可以避免高压部分对低压控制部分的电磁干扰。本文主要介绍井-地电磁发射机中的低压控制部分的硬件电路和软件设计。本文所设计的电磁发射机主要应用CSAMT方法,发射频点范围为1OkHz~0.01Hz。传统频率域电磁发射机存在频点覆盖率低、在野外环境工作效率不高和同步发射性能差等问题。根据课题研制的发射机的技术指标要求,本文采用直接数字频率合成技术(DDS)与复杂可编程逻辑器件(CPLD)设计实现了发射机任意频率的供电波形合成功能;利用CPLD强大的逻辑运算能力,在常见的扫频功能的基础上增加了一种简单可靠的多频发射波形,提高了野外电磁勘探的工作效率;利用结合GPS信号的恒温晶振校准电路,设计实现了发射系统的高精度同步发射。概括而言,控制系统是以ARM+CPLD作为主控,外围电路主要有DDS、RTC、恒温晶振校准电路和无线模块等。系统中的软件设计主要包括频率表定时扫频程序设计、波形合成程序设计和发射脉冲与PPS信号同步程序设计,其中波形合成程序包含有单频、多频和m序列供电波形三种波形的程序设计。最后,系统进行了多次水槽试验和野外试验,其中水槽试验主要进行了发射机的供电波形测试、同步精度测试和上位机程序测试等,野外试验则主要测试了发射机的整体工作性能。结果表明,发射机合成的发射波形频点精度高、频率稳定性好、多频信号能量分布均匀、发射同步误差在纳秒级、死区时间设置合理,发射机长时间工作稳定,系统可靠性高,完全满足课题设计要求。
[Abstract]:Well-ground electromagnetic exploration is an effective method for the exploration of metal deposits. Using the existing mine holes and roadways in the mining area, adopting the method of in-hole launching and surface receiving, can effectively avoid the surface electromagnetic interference and increase the precision of exploration.Compared with the traditional electromagnetic transmitter, the well to ground electromagnetic transmitter designed in this paper adopts a separate remote control scheme, that is, the control module of the transmitter is separated from the main loop and connected by multi-core shielded cable.This approach has many advantages, the most significant of which is to avoid the electromagnetic interference of the high voltage part to the low voltage control part.This paper mainly introduces the hardware circuit and software design of low voltage control part in well-ground electromagnetic transmitter.The CSAMT method is mainly used in the electromagnetic transmitter designed in this paper. The frequency range of the transmitter is 1 OkHz0. 01 Hz.The traditional frequency domain electromagnetic transmitter has some problems, such as low frequency coverage, low efficiency in field environment and poor synchronous emission performance.According to the technical requirements of the transmitter developed in this paper, direct digital frequency synthesizer (DDS) and complex programmable logic device (CPLDD) are used to design and realize the power waveform synthesis function of the transmitter at any frequency.By using the powerful logic operation ability of CPLD, a simple and reliable multi-frequency transmitting waveform is added on the basis of common frequency-sweeping function, and the work efficiency of field electromagnetic exploration is improved, and the calibrating circuit of constant temperature crystal oscillator combined with GPS signal is used.The high precision synchronous launch of the launch system is designed and realized.To sum up, the control system is based on ARM CPLD. The peripheral circuits include DDS RTC, constant temperature crystal oscillator calibration circuit and wireless module.The software design of the system mainly includes the frequency table timing sweep program, the waveform synthesis program and the synchronous program of transmitting pulse and PPS signal, in which the waveform synthesis program includes single frequency.Program design of multi-frequency and m-sequence power supply waveforms.Finally, the system has carried out many water tank tests and field tests, in which the water tank test mainly carried out the transmitter power supply waveform test, synchronization accuracy test and host computer program testing, etc.Field tests mainly test the overall performance of the transmitter.The results show that the transmitter has the advantages of high frequency accuracy, good frequency stability, uniform energy distribution of the multi-frequency signal, the synchronization error in nanosecond level, reasonable dead-time setting, stable work for a long time, and high reliability of the system.Fully meet the project design requirements.
【学位授予单位】:中国地质大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P631.325

【参考文献】

相关期刊论文 前10条

1 陈光源;邓明;金胜;王猛;吴承璇;宗芳伊;;井地电磁发送机嵌入式人机交互软件设计[J];地球物理学进展;2016年05期

2 陈凯;魏文博;邓明;景建恩;王猛;;新一代陆用MT观测系统[J];物探与化探;2015年04期

3 葛双超;邓明;陈凯;;复电阻率测量方法与模型仿真[J];地球科学进展;2014年11期

4 刘立超;丁凯来;林君;周逢道;刘长胜;;基于伪随机系统辨识的电磁法仪器标定[J];仪器仪表学报;2014年08期

5 王旭红;张一鸣;冯金兰;韩磊;;大功率电磁发射机开关频率精确控制研究[J];科学技术与工程;2014年20期

6 淳少恒;陈儒军;耿明会;;伪随机m序列及其在电法勘探中的应用进展[J];地球物理学进展;2014年01期

7 张启升;邓明;刘宁;孔银鸽;关善亮;;投弃式海流电场剖面仪研制[J];地球物理学报;2013年11期

8 王猛;张汉泉;伍忠良;盛堰;罗贤虎;景建恩;陈凯;;勘查天然气水合物资源的海洋可控源电磁发射系统[J];地球物理学报;2013年11期

9 陈凯;景建恩;魏文博;盛堰;罗贤虎;陈光源;史心语;;海洋拖曳式水平电偶源数值模拟与电场接收机研制[J];地球物理学报;2013年11期

10 邓明;魏文博;盛堰;景建恩;何水原;罗贤虎;史心语;;深水大地电磁数据采集的若干理论要点与仪器技术[J];地球物理学报;2013年11期

相关硕士学位论文 前3条

1 苟力;基于FPGA的高速DDS关键技术研究[D];电子科技大学;2016年

2 冯金兰;基于DSP&FPGA的地面电磁探测发射机的设计与研究[D];北京工业大学;2014年

3 胡思雨;2.4GHz ZigBee与WiFi以及蓝牙系统间干扰分析[D];西安电子科技大学;2014年



本文编号:1720249

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/1720249.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fb9fd***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com