当前位置:主页 > 科技论文 > 矿业工程论文 >

基于统一强度理论的TBM斜井围岩弹塑性解及试验研究

发布时间:2018-04-22 21:09

  本文选题:TBM斜井 + 统一强度理论 ; 参考:《中国矿业大学(北京)》2017年博士论文


【摘要】:近年来,随着煤矿开采技术的发展,矿井开采深度日益增大,煤矿产能不断提高,开采过程中遇到的各种问题逐渐增多,斜井开拓逐渐成为提高矿井产能的主要提升方式;TBM施工以其高效、优质、安全等优点逐渐成为斜井建设的重要手段。进行长距离、大埋深TBM斜井施工是我国煤炭建设中的一大挑战,施工过程中会遇到多种不可预测的问题,对长距离斜井开挖后围岩稳定性进行研究,对工程安全具有重要意义,但现有相关研究较少,是目前亟待解决的问题。本文针对TBM斜井建设中遇到的大坡度、大埋深、穿越复杂地层等问题,以神华新街能源公司台格庙矿区TBM斜井工程为依托,采用理论、数值模拟和模型试验相结合的方法,对衬砌-围岩相互作用下的TBM斜井围岩和衬砌力学特性的变化规律进行系统研究;穿越富水地层时,需考虑地下水的渗流作用,文中对渗流影响下斜井围岩进行了力学分析和弹塑性理论推导。主要进行了以下工作:(1)基于统一强度理论对TBM斜井围岩进行弹塑性理论求解结合坐标转换原理,建立TBM斜井横断面内弹塑性力学分析模型;基于统一强度理论推导出两向非等压应力场中围岩塑性区半径、围岩应力及位移的解析计算式。参考神华新街能源公司台格庙矿区TBM斜井工程的实际勘察资料,进行计算和参数分析,深入研究中间主应力影响参数、斜井倾角、原岩侧压力系数和衬砌与围岩弹性模量比等因素对斜井横断面内围岩塑性区半径、弹塑性区应力及塑性区径向位移的影响规律。计算结果表明考虑中间主应力作用时,围岩自稳能力增强;围岩侧压力系数、斜井倾角和衬砌与围岩的弹性模量比均会对围岩塑性区范围及围岩应力、位移产生不同程度的影响;衬砌与围岩的弹性模量比越大,衬砌支护力也越大。研究结果为类似条件下的TBM斜井施工及安全性评价提供了理论依据,具有一定的工程参考意义。(2)考虑渗流影响的TBM斜井围岩弹塑性解对TBM斜井围岩的应力场和渗流场进行耦合分析,建立斜井横断面内弹塑性力学分析模型;基于统一强度理论和非关联流动法则推导出考虑渗流和剪胀作用的TBM斜井围岩弹塑性解,深入研究渗流作用和剪胀角对塑性区半径和围岩应力、位移的影响规律。与无渗流影响的计算结果进行对比,结果表明地下水的渗流作用对围岩力学特性的影响不可忽略;剪胀角对围岩塑性区径向位移有显著影响,对塑性区半径的影响相对较小,对围岩应力的影响不明显。(3)TBM斜井围岩应力和位移变化的数值模拟计算采用FLAC3D计算软件对不同埋深下斜井衬砌和围岩进行模拟计算,得到侧压系数、倾角、衬砌-围岩弹模比和埋深对竖直断面内围岩塑性区范围、应力和位移的变化规律。对计算模型进行切片处理,得到斜井横断面的应力、位移分布规律,并将数值计算结果与理论计算结果进行对比分析,结果表明两者所得结论高度一致。(4)斜井围岩位移和衬砌内力变化的模型试验研究以顶部逐级加载的方式来模拟斜井埋深的变化,通过大型室内相似模型试验,对不同荷载条件下衬砌管片内力和围岩径向位移的变化进行研究,得到斜井围岩径向位移、管片结构不同位置处内力随着竖向加载值的变化规律。采用不同材料制作衬砌管片结构进行模型试验,得到不同材料管片结构对围岩位移的影响及其自身内力的变化情况;将试验结果与文中的理论计算结果进行对比分析和验证。结果显示,随着竖向荷载值的增大,围岩径向位移逐渐增大,且竖直方向围岩的位移明显大于水平方向围岩的位移;管片轴力和弯矩同样随着荷载的增大而增大。管片中各处轴力均为压应力,且拱腰处轴力最大,而顶部轴力最小;管片顶部和底部为正弯矩,拱腰处为负弯矩。将数值计算所得衬砌内力值与试验测得结果进行对比,二者所得结论一致。通过分析不同位置处管片内力值,发现管片接头位置对其内力的影响不显著。实际工程中应根据斜井埋深的不断变化,适当调整管片结构的设计强度和刚度,以满足工程需要。
[Abstract]:In recent years, with the development of coal mining technology, the depth of mine mining is increasing, the productivity of the coal mine is increasing, and the problems encountered in the mining process are increasing gradually. The slope opening gradually becomes the main way to raise the productivity of the mine, and the TBM construction has gradually become an important means of the construction of the inclined shaft with its advantages of high efficiency, high quality and safety. The construction of long distance and deep buried TBM inclined shaft is a big challenge in China's coal construction. There will be many unpredictable problems in the construction process. It is of great significance to study the stability of the surrounding rock after the long distance inclined shaft excavation, but the existing related research is less. This paper is a problem to be solved at present. This paper is aimed at TBM oblique. In the construction of well, large slope, large burial depth, cross complex stratum and so on, based on the TBM slope project of the Tai GG Temple mining area, Huaxin energy company, Shen Huaxin energy company, with the method of combining the theory, numerical simulation and model test, the change law of the mechanical characteristics of the perinas and lining of the TBM inclined shaft under the interaction of lining and surrounding rock is systematically studied. When crossing the rich water stratum, the seepage action of groundwater should be considered. In this paper, the mechanical analysis and elastoplastic theory of the surrounding rock of the inclined well under the influence of seepage are carried out. The following work is done mainly: (1) based on the unified strength theory, the elastoplastic theory of the surrounding rock of the TBM inclined well is solved with the principle of coordinate transformation, and the elastic-plastic in the cross section of the TBM inclined shaft is established. Based on the unified strength theory, the analytical formula of the plastic zone radius of the surrounding rock and the stress and displacement of the surrounding rock in the two non isobaric stress field is derived. The actual survey data of the TBM slope engineering of the Shenhua New Street energy company Tai Ge Temple mining area is calculated and analyzed, and the influence parameters of the intermediate principal stress are deeply studied, and the inclined well is studied. The influence of the angle, the pressure coefficient of the original rock side and the ratio of the elastic modulus of the lining and the surrounding rock to the plastic zone radius of the surrounding rock, the stress of the elastic plastic zone and the radial displacement of the plastic zone in the cross section of the inclined shaft. The results show that the stability of the surrounding rock is enhanced when the intermediate principal stress is taken into consideration, the side pressure coefficient of the surrounding rock, the inclination of the inclined shaft and the lining and the surrounding rock The elastic modulus ratio will affect the plastic zone range of surrounding rock and the stress and displacement of surrounding rock, and the greater the modulus of elastic modulus of the lining and the surrounding rock, the greater the lining support force. The research results provide a theoretical basis for the construction and safety evaluation of TBM inclined well under similar conditions, which has certain engineering reference significance. (2) consideration of seepage. The Elastoplastic Solution of the surrounding rock of the TBM inclined well is coupled to the stress field and the seepage field of the surrounding rock of the TBM inclined shaft, and the elastoplastic mechanical analysis model in the cross section of the inclined shaft is established. Based on the unified strength theory and the unrelated flow rule, the Elastoplastic Solution of the perinas in the TBM inclined well considering the seepage and dilatancy effects is derived, and the seepage action and shear are deeply studied. The influence of the expansion angle on the plastic zone radius and the stress and displacement of the surrounding rock is compared with the calculation results without seepage. The results show that the influence of seepage on the mechanical properties of the surrounding rock can not be ignored; the dilatancy angle has a significant influence on the radial displacement of the plastic zone of the surrounding rock, and the effect on the radius of the plastic zone is relatively small, and the stress on the surrounding rock The influence is not obvious. (3) the numerical simulation calculation of the stress and displacement of the surrounding rock of TBM inclined shaft is calculated by FLAC3D software to simulate the lining and surrounding rock of the inclined shaft under different buried depth, and the change law of the lateral pressure coefficient, the dip angle, the elastic modulus ratio of the lining wall rock and the depth to the plastic zone range of the surrounding rock in the vertical section, the stress and displacement of the surrounding rock are calculated. The model is sliced to get the stress and displacement distribution of the cross section of the inclined shaft, and the results of numerical calculation are compared with the theoretical calculation results. The results show that the results are highly consistent. (4) the model test of the change of the displacement of the surrounding rock and the internal force of the lining of the inclined well is used to simulate the buried depth of the inclined shaft by the way of the top step by step. The changes in the internal force of lining tube and the radial displacement of the surrounding rock under different load conditions are studied by a large indoor similar model test. The radial displacement of the surrounding rock of the inclined shaft and the variation law of the internal force with the vertical loading value at different position of the pipe structure are obtained. The influence of the structure of different materials on the displacement of surrounding rock and the change of its internal force, the experimental results are compared with the theoretical calculation results in the paper. The results show that the radial displacement of the surrounding rock increases with the increase of the vertical load value, and the displacement of the vertical surrounding rock is obviously larger than the displacement of the surrounding rock. The axial force and bending moment of the pipe also increase with the increase of the load. The axial force in each section of the pipe is all pressure stress, and the axial force of the arch waist is the largest, and the top axis force is the least; the top and bottom of the tube are positive bending moment, and the arch waist is negative bending moment. The results of the inner force of the lining of the numerical calculation are compared with the test results, the conclusions of the two are in the same conclusion. Through the analysis of the internal force values at different positions at different positions, it is found that the effect of the position of the joint on the internal force is not significant. In practical engineering, the design strength and stiffness should be adjusted according to the constant change of the buried depth of the inclined shaft, so as to meet the needs of the engineering.

【学位授予单位】:中国矿业大学(北京)
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TD26

【相似文献】

相关期刊论文 前10条

1 邓尚平,傅鹤林;板裂介质围岩中的隧道衬砌与围岩相互作用机理[J];采矿技术;2003年01期

2 杨治林;板裂介质围岩的流变屈曲研究[J];西安科技大学学报;2004年03期

3 姜云,李永林,李天斌,王兰生;隧道工程围岩大变形类型与机制研究[J];地质灾害与环境保护;2004年04期

4 刘高,王小春,聂德新;金川矿区地下巷道围岩应力场特征及演化机制[J];地质灾害与环境保护;2002年04期

5 张凯,王希良;地下工程软弱岩体围岩结构的地震探测技术[J];河北煤炭;2004年04期

6 葛家良,陆士良;围岩结构特性对注浆的影响[J];矿山压力与顶板管理;1997年01期

7 张顶立,钱鸣高;综放工作面围岩结构分析[J];岩石力学与工程学报;1997年04期

8 杨利平;张凤杰;;深部软岩巷道支护围岩结构的变化规律研究[J];煤炭技术;2014年06期

9 徐望国;陈晓斌;张家生;;破碎带围岩参数确定有限元反演试验研究[J];塑性工程学报;2007年05期

10 郭秉超;张坤;曹建涛;;三维可加载条件下工作面围岩局部变形规律[J];煤炭工程;2010年02期

相关会议论文 前10条

1 黄运飞;;关于围岩弱化的几个问题[A];第四届全国工程地质大会论文选集(二)[C];1992年

2 姜云;;隧道工程围岩大变形类型与机制研究[A];中国公路学会2004年学术年会论文集[C];2004年

3 曾元一;翁世梁;朱正珏;;坪林主隧道大断面TBM之施工规划[A];海峡两岸土力学及基础工程地工技术学术研讨会论文集[C];1994年

4 曾元一;翁世梁;朱正珏;;全断面隧道钻掘机(TBM)于软弱岩层之施工[A];海峡两岸土力学及基础工程地工技术学术研讨会论文集[C];1994年

5 张延庆;;钻开油层井眼围岩结构模拟研究[A];第三届全国结构工程学术会议论文集(下)[C];1994年

6 王士民;朱合华;蔡永昌;李晓军;;曙光反分析程序及其在工程中的应用[A];全国岩土工程反分析学术研讨会暨黄岩石窟(锦绣黄岩)岩石力学问题讨论会文集[C];2006年

7 祁海燕;;TBM钢筋排架安装系统应用[A];水与水技术(第4辑)[C];2014年

8 吴德润;赵国光;唐洪乐;;TBM顶底复吹技术在梅山炼钢厂的运用[A];中国金属学会2003中国钢铁年会论文集(3)[C];2003年

9 赵均海;顾强;;统一强度理论下的有限元程序及工程应用[A];计算机在土木工程中的应用——第十届全国工程设计计算机应用学术会议论文集[C];2000年

10 黄平华;;盾构及TBM设备监造的实践与探索[A];中国中铁隧道集团2007年水底隧道专题技术交流大会论文集[C];2007年

相关重要报纸文章 前5条

1 杨三柱 袁炜刚;做专做优隧道主业 叫响叫亮TBM品牌[N];中国铁道建筑报;2012年

2 记者李仕兵 通讯员叶廷勇 赵晓莉;采用TBM实施煤矿长斜井建设开先河[N];中国铁道建筑报;2013年

3 商报首席记者 刘敏;轨道建设提速4倍 巨无霸TBM挖出“重庆速度”[N];重庆商报;2012年

4 通讯员 资谊;煤炭行业首次TBM工法 设计通过专家论证[N];中国铁道建筑报;2011年

5 王佳 记者 王杰学;青藏高原首台TBM成功始发[N];西藏日报(汉);2013年

相关博士学位论文 前10条

1 刘璐璐;基于统一强度理论的TBM斜井围岩弹塑性解及试验研究[D];中国矿业大学(北京);2017年

2 徐昌茂;基于围岩稳定性与超前地质预报的高铁隧道钻爆开挖工法转换条件研究[D];中国地质大学;2015年

3 郝杰;高地应力区隧洞施工期围岩质量评价及稳定性研究[D];新疆农业大学;2015年

4 于富才;隧道支护与围岩作用体系的力学特性研究[D];北京交通大学;2017年

5 房倩;高速铁路隧道支护与围岩作用关系研究[D];北京交通大学;2010年

6 刘大刚;公路隧道施工阶段岩体围岩亚级分级研究[D];西南交通大学;2007年

7 熊晓晖;富水深埋TBM斜井围岩卸荷特性研究[D];重庆大学;2015年

8 姜云;公路隧道围岩大变形的预测预报与对策研究[D];成都理工大学;2004年

9 李英杰;软弱深埋隧道围岩结构特性及支护荷载确定方法研究[D];北京交通大学;2012年

10 张哲;隧(巷)道开挖扰动区(EDZ)形成过程及机理的研究[D];东北大学;2007年

相关硕士学位论文 前10条

1 覃媛;围岩与衬砌相互作用的隧洞力学分析[D];华北电力大学;2015年

2 徐伟;武深高速公路小方山隧道施工围岩—结构稳定性分析研究[D];重庆交通大学;2015年

3 蒲鸥;浅埋偏压隧道的围岩自稳性研究及工程应用[D];广西大学;2017年

4 龚书贤;层状围岩隧道力学特性及稳定性研究[D];重庆大学;2011年

5 刘彪;岩质围岩隧道的稳定性研究[D];西南交通大学;2008年

6 唐辉湘;散体围岩浅埋隧道的开挖与支护技术研究[D];长沙理工大学;2011年

7 曹君陟;围岩动载稳定性的数值模拟研究[D];山东科技大学;2005年

8 金昊;马尔康隧道围岩变形与稳定性研究[D];西华大学;2012年

9 纪珊珊;长大隧道开敞式TBM掘进性能及刀具损耗规律研究[D];石家庄铁道大学;2015年

10 李荣鑫;TBM机头架焊接数值模拟与接头金相组织分析[D];郑州大学;2016年



本文编号:1788944

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/1788944.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a877a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com