不同变质程度含瓦斯煤渗吸效应实验研究
本文选题:含瓦斯煤 + 渗吸效应 ; 参考:《河南理工大学》2016年博士论文
【摘要】:为研究水分单因素影响下含瓦斯煤渗吸效应的发生规律,在对目前相关实验装置调研的基础上,设计并搭建了一套用于渗吸效应研究的实验测试装置。该装置能够有效排除注水压力、注入水体积对实验的影响和干扰,确保煤样罐内瓦斯压力变化仅由渗吸效应促进含瓦斯煤解吸影响造成,同时配备高精度压力传感器,能够实现对渗吸效应过程中煤样罐内的压力变化进行全程监控与自动记录。通过考察型煤和颗粒煤在常压下的自发吸水效果,确定了合理的实验煤样型式为型煤;通过对型煤吸水不同时间后的吸水高度及含水率分布考察,确定了合理的实验用型煤高度和煤样含水率。在此基础上,针对无烟煤(WYM)、贫瘦煤(PSM)、焦煤(JM)和气煤(QM)等四种不同变质程度煤,分别开展了不同含水率和不同吸附平衡压力条件下的渗吸效应实验研究,探讨了不同变质程度煤渗吸效果对含水率和吸附平衡压力变化的响应特性;基于实验测试数据,对比分析了不同变质程度煤在相同实验条件下的渗吸效果差异,并对产生差异性的原因进行了理论分析。实验结果表明,水分自然进入含瓦斯煤后,煤样罐内瓦斯压力不断升高,说明水分能够依靠渗吸效应置换出处于吸附态的瓦斯,从而有效促进煤层吸附瓦斯解吸。吸附平衡压力相同时,随煤样含水率增长,渗吸瓦斯量和渗吸瓦斯率均逐渐增大,但前期增幅较大,后期增幅逐渐变缓;数据拟合结果表明,二者与煤样含水率之间均符合Langmuir型函数关系,当煤样含水率达到煤的极限吸水率时,渗吸瓦斯量和渗吸瓦斯率将达到极限值。煤样含水率相同时,渗吸瓦斯量随吸附平衡压力增长较好的符合Langmuir型函数关系,渗吸瓦斯率则随吸附平衡压力升高逐渐降低。不同实验条件下的渗吸瓦斯速度均经历“快速渗吸-缓慢渗吸-终止渗吸”三个发展阶段,且煤样含水率越高、初始吸附平衡压力越大,水分进入含瓦斯煤初期的渗吸瓦斯速度就越大。相同实验条件下,不同变质程度煤的渗吸效果存在较大差异:渗吸瓦斯量和渗吸瓦斯速度方面,均是WYM最大,QM和PSM居中,JM最小;渗吸瓦斯率方面,则是QM最大,WYM和JM居中,PSM最小。理论分析认为,不同变质程度煤的润湿性和孔隙结构特征不同是造成上述差异的根本原因。
[Abstract]:In order to study the occurrence rule of gas-bearing coal permeation effect under the influence of water single factor, a set of experimental test equipment was designed and built on the basis of investigation of relevant experimental devices. The device can effectively eliminate the water injection pressure and the influence and interference of the injected water volume on the experiment, and ensure that the change of gas pressure in the coal sample tank is only caused by the infiltration effect to promote the desorption effect of gas-bearing coal, and the high precision pressure sensor is equipped at the same time. The whole process monitoring and automatic recording of pressure change in coal sample tank can be realized. By investigating the spontaneous water absorption effect of briquette and granular coal under atmospheric pressure, the reasonable experimental coal type is determined as briquette, and the water absorption height and water content distribution of briquette after different time absorption are investigated. The reasonable height of briquette and moisture content of coal sample were determined. On the basis of this, four kinds of coal with different metamorphic degree, such as anthracite (WYM), lean coal (PSM), coking coal (JM) and gas coal (QM), were studied respectively under different moisture content and adsorption equilibrium pressure. The response characteristics of different metamorphic coal permeability to the change of moisture content and adsorption equilibrium pressure are discussed, and the difference of permeability and absorption effect of different metamorphic coal under the same experimental conditions is compared and analyzed based on the experimental data. The reason of the difference is analyzed theoretically. The experimental results show that the gas pressure in the coal tank increases continuously after the moisture naturally enters the gas-bearing coal, which indicates that the moisture can replace the gas in the adsorbed state by the effect of seepage and suction, thus effectively promoting the adsorption gas desorption in the coal seam. When the adsorption equilibrium pressure is the same, with the increase of moisture content of coal sample, the amount of gas absorption and the rate of gas absorption increase gradually, but the increase in the early stage is larger, and the increase in the latter stage is gradually slow. The data fitting results show that, The relationship between them and the moisture content of coal samples accords with the Langmuir function. When the water content of coal sample reaches the limit of water absorption rate of coal, the amount of gas permeation and the rate of gas absorption will reach the limit value. When the moisture content of coal sample is the same, the amount of gas permeating and absorbing gas with the increase of adsorption equilibrium pressure accords with the Langmuir function better, and the gas permeation rate decreases gradually with the increase of adsorption equilibrium pressure. Under different experimental conditions, the velocity of gas permeation and suction all go through three stages of development: rapid infiltration, slow permeation and stop infiltration. The higher the moisture content of coal sample is, the greater the initial adsorption equilibrium pressure is. The higher the gas absorption rate of water entering the gas-bearing coal at the initial stage. Under the same experimental conditions, there are great differences in the permeation effect of coal with different metamorphic degrees: in terms of gas permeation and gas absorption velocity, the WYM maximum QM and PSM are the lowest in the middle of JM, and the gas absorption rate is the lowest. The maximum QM WYM and JM are the smallest in PSM. The theoretical analysis shows that the difference of wettability and pore structure of coal with different metamorphic degree is the root cause of these differences.
【学位授予单位】:河南理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TD712
【相似文献】
相关期刊论文 前10条
1 陈淦,宋志理;火烧山油田基质岩块渗吸特征[J];新疆石油地质;1994年03期
2 王家禄;刘玉章;陈茂谦;刘莉;高建;;低渗透油藏裂缝动态渗吸机理实验研究[J];石油勘探与开发;2009年01期
3 姚同玉;李继山;王建;刘卫东;;裂缝性低渗透油藏的渗吸机理及有利条件[J];吉林大学学报(工学版);2009年04期
4 李爱芬;凡田友;赵琳;;裂缝性油藏低渗透岩心自发渗吸实验研究[J];油气地质与采收率;2011年05期
5 向阳;储集岩石的渗吸及其应用[J];新疆石油地质;1984年04期
6 华方奇,宫长路,熊伟,王群;低渗透砂岩油藏渗吸规律研究[J];大庆石油地质与开发;2003年03期
7 姜宝益;李治平;蔡喜东;王希刚;史庆阳;;基于模糊层次分析法的油藏渗吸潜力评价方法[J];特种油气藏;2012年06期
8 钟家峻;杨小军;陈燕虎;唐海;吕栋梁;张媛;;低渗透岩心自然渗吸实验新方法[J];石油化工应用;2013年06期
9 彭昱强;郭尚平;韩冬;;表面活性剂对中性砂岩渗吸的影响[J];油气地质与采收率;2010年04期
10 B.Guo;曾中立;乔向阳;;天然裂缝性斯普拉伯雷走向带油藏渗吸注水开发的综合研究[J];吐哈油气;1999年01期
相关会议论文 前2条
1 张星;毕义泉;汪庐山;任占春;;低渗透砂岩油藏渗吸规律研究[A];渗流力学与工程的创新与实践——第十一届全国渗流力学学术大会论文集[C];2011年
2 蔡建超;赵春明;谭吕;郁伯铭;郭士礼;潘中华;;低渗油藏毛细渗吸的分形研究[A];渗流力学与工程的创新与实践——第十一届全国渗流力学学术大会论文集[C];2011年
相关博士学位论文 前3条
1 陈金生;不同变质程度含瓦斯煤渗吸效应实验研究[D];河南理工大学;2016年
2 刘国栋;造纸涂层材料自渗吸行为机制及理论建模研究[D];陕西科技大学;2014年
3 李继山;表面活性剂体系对渗吸过程的影响[D];中国科学院研究生院(渗流流体力学研究所);2006年
相关硕士学位论文 前7条
1 程晓倩;新疆低n蛲干袄矣筒厣硌芯縖D];中国科学院研究生院(渗流流体力学研究所);2014年
2 苏伟伟;含瓦斯煤外加水分渗吸效应研究[D];河南理工大学;2015年
3 高陪;致密砂岩储层渗吸特征实验研究[D];西安石油大学;2016年
4 桑娜云;树状分叉结构自发渗吸的研究[D];华中科技大学;2012年
5 魏铭江;裂缝性油藏基质岩心自然渗吸实验研究[D];西南石油大学;2015年
6 刘磊;利用分子膜渗吸提高采收率实验研究[D];成都理工大学;2011年
7 白培瑞;智能土壤渗吸速度测试仪的研究[D];太原理工大学;2002年
,本文编号:1796996
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1796996.html