当前位置:主页 > 科技论文 > 矿业工程论文 >

复杂地质体克里金插值算法的研究

发布时间:2018-04-29 01:00

  本文选题:Delaunay剖分 + Kriging方法 ; 参考:《中国石油大学(华东)》2015年硕士论文


【摘要】:Kriging方法虽然经过长时间的发展已经趋于成熟。但如何利用Kriging插值技术更好的实现复杂地质体的属性插值,一直是地震勘探专家关注的重点,因此结合复杂地质体的特点并对Kriging插值算法在效率和效果方面持续改进一直是地球物理学家和数学家研究的热点。本文针对复杂地质体的特点,基于Delaunay三角剖分和四面体剖分技术,对单纯的Kriging插值方法进行了改进,并在保持已有样本点不变的基础上,通过三角形内部分割和插值等手段,加密了样本点数,改进了Kriging插值方法,提高了复杂地质体属性插值的效率和效果。主要完成了四项工作一.详细分析了Delaunay剖分算法,并给出了OK插值方法的理论分析及公式推导。二.结合复杂地质断层的一些特点,基于Delaunay剖分结果,推导并实现了基于三角形的Kriging插值算法,并在此基础上给出了算法详细实现流程,完成了地质层位和复杂断层的属性插值。三.结合复杂地质体的一些特点,基于四面体剖分结果,推导并实现了基于四面体的Kriging算法,并在此基础上给出了算法详细实现流程,完成了复杂地质体的三维属性插值。四.利用论文研究的算法和部分实际地震数据,完成了多块实际数据的复杂地质体属性插值,而且插值效果较好,验证了算法的正确性和可行性。
[Abstract]:Although the Kriging method has been developed for a long time, it has become mature. However, how to use Kriging interpolation technology to better realize the attribute interpolation of complex geological bodies has always been the focus of attention of seismic exploration experts. Therefore, combining with the characteristics of complex geological bodies and improving the efficiency and effect of Kriging interpolation algorithm, it has been a hot topic for geophysicists and mathematicians. In this paper, based on Delaunay triangulation and tetrahedron technique, the simple Kriging interpolation method is improved according to the characteristics of complex geological bodies. On the basis of keeping the existing sample points unchanged, the interior segmentation and interpolation of triangles are carried out. The sample number is encrypted and the Kriging interpolation method is improved to improve the efficiency and effect of the complex geological body attribute interpolation. Four major tasks have been completed. The Delaunay partition algorithm is analyzed in detail, and the theoretical analysis and formula derivation of OK interpolation method are given. II. Combined with some characteristics of complex geological faults and based on the results of Delaunay subdivision, a triangle based Kriging interpolation algorithm is derived and implemented. On this basis, the detailed realization flow of the algorithm is given, and the attribute interpolation of geological horizon and complex fault is completed. III. Combined with some characteristics of complex geological bodies and based on the result of tetrahedron, the Kriging algorithm based on tetrahedron is deduced and realized. Based on this, the detailed realization flow of the algorithm is given, and the 3D attribute interpolation of complex geological bodies is completed. IV. Using the algorithm studied in this paper and some of the actual seismic data, the interpolation of complex geological body attributes of many real data is completed, and the interpolation effect is good, which verifies the correctness and feasibility of the algorithm.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:P631.4

【参考文献】

相关期刊论文 前7条

1 余杰;吕品;郑昌文;;Delaunay三角网构建方法比较研究[J];中国图象图形学报;2010年08期

2 刘云;夏兴东;黄北生;;基于分治算法与逐点插入法的Delaunay三角网建立算法的改进[J];现代测绘;2010年04期

3 何涛;张武;李玲;孙玉秋;;基于距离反比加权的地层插值方法优化研究[J];石油天然气学报;2010年02期

4 陈学工;李源;曹建;肖克炎;;Delaunay三角网剖分的约束边嵌入改进算法[J];计算机工程与应用;2009年24期

5 关振群 ,宋超 ,顾元宪 ,隋晓峰;有限元网格生成方法研究的新进展[J];计算机辅助设计与图形学学报;2003年01期

6 凌海滨,吴兵;改进的自连接Delaunay三角网生成算法[J];计算机应用;1999年12期

7 丁永祥,夏巨谌,王英,,肖景容;任意多边形的Delaunay三角剖分[J];计算机学报;1994年04期

相关硕士学位论文 前1条

1 王勇标;克里金算法的改进[D];长江大学;2012年



本文编号:1817669

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/1817669.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户926c5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com