扎哈淖尔露天煤矿岩层爆破参数优化研究
发布时间:2018-04-30 05:18
本文选题:煤矿岩层 + 爆破参数优化 ; 参考:《内蒙古科技大学》2015年硕士论文
【摘要】:本文主要针对扎哈淖尔露天矿岩层台阶不合理爆破参数,导致有些岩层爆区爆破效果好,有些岩层爆区效果不理想,大块率不合理,单耗偏高,从而影响该矿的经济效益。该矿岩层台阶主要以中、粗砂岩、泥岩等中软岩为主,每次爆破效果不错,但是该矿岩层台阶爆破大多采用统一的爆破参数,不加以区分岩层台阶岩石的主要成分,使爆破效果还没有达到最佳。因此,本文针对该矿岩层台阶爆破参数进行优化,根据不同地质构造、岩性情况,进行爆破分区,提出最优爆破参数方案,在保证爆破效果的前提下,降低爆破成本,提高爆破效率,,从而降低矿山的开采成本。 本文具体研究内容与方法如下: (1)本文通过查阅文献学习国内外露天矿爆破参数优化相关理论与方法,同时收集扎哈淖尔露天煤矿岩层地质资料,及该矿的每次岩层爆破使用的设计参数和相应统计的爆破效果资料;为优化该矿岩层台阶爆破提供基础资料。 (2)应用层次分析法分析影响露天矿岩层台阶爆破效果的权值,分析确定影响爆破效果的主控因素。 (3)通过层次分析法得到影响爆破效果的因素,然后将这些影响因素指导工业试验。具体是在实验室测得不同台阶岩层的力学性质与构造数据前提下,利用逐渐调整孔网参数、底盘抵抗线、炸药单耗等数据,应用到现场试验爆破,得到不同爆破效果,将这些数据收集后作为BP神经网络爆破优化模型的训练样本数据。 (4)利用现场现场试验数据作为样本建立BP神经网爆破优化模型,经验证模型误差在合理范围内,该模型可以作为优化该矿岩层台阶爆破参数依据。 (5)模型确定后,将不同岩层台阶岩石力学参数与理想的爆破效果作为输入参数,得到优化后的输出参数;根据现场实际情况,对这些优化后参数进行微调,最终确定该矿不同岩层的最优的爆破参数;将优化后的爆破参数应用到现场实践,分析爆破效果与经济效益,得出结论。
[Abstract]:This paper mainly aims at the unreasonable blasting parameters of rock strata in Zahannaoer opencast mine, which results in good blasting effect in some rock strata blasting areas and unsatisfactory blasting effect in some rock strata, unreasonable bulk rate and high unit consumption, thus affecting the economic benefits of the mine. The main rock bench in this mine is medium soft rock, coarse sandstone, mudstone and so on, and the blasting effect is good every time. However, the blasting parameters of the strata are mostly unified and the main components of the rock strata are not distinguished. The blasting effect has not reached the best yet. Therefore, this paper optimizes the blasting parameters of rock strata in this mine, according to the different geological structure and lithology, carries on the blasting division, proposes the optimum blasting parameter plan, under the premise of ensuring the blasting effect, reduces the blasting cost. To improve the blasting efficiency and reduce the mining cost. The contents and methods of this paper are as follows: In this paper, the relevant theories and methods of blasting parameters optimization in open-pit mines at home and abroad are studied, and the geological data of rock strata in Zahannaoer opencast coal mine are collected at the same time. And the design parameters and the corresponding statistical blasting effect data of each rock stratum blasting in this mine, which provides the basic data for optimizing the rock strata bench blasting in the mine. (2) Analytic hierarchy process (AHP) is applied to analyze the weight of bench blasting effect in open-pit rock strata, and the main controlling factors are analyzed and determined. The factors influencing the blasting effect are obtained by AHP, and then these factors are used to guide the industrial test. Specifically, on the premise of the mechanical properties and structural data of different steps measured in the laboratory, using the data of gradually adjusting the parameters of the hole network, the resistance line of the chassis and the unit consumption of the explosive, the data are applied to the field test blasting, and different blasting effects are obtained. These data are collected as training sample data of BP neural network blasting optimization model. 4) the BP neural network blasting optimization model is established by using the field test data as the sample. It is verified that the model error is within a reasonable range, and the model can be used as the basis for optimizing the blasting parameters of the strata of the mine. After the model is determined, the rock mechanics parameters and the ideal blasting effect of different strata are taken as input parameters, and the optimized output parameters are obtained, and these optimized parameters are fine-tuned according to the actual situation in the field. Finally, the optimal blasting parameters of different strata of the mine are determined, the optimized blasting parameters are applied to the field practice, the blasting effect and economic benefit are analyzed, and the conclusion is drawn.
【学位授予单位】:内蒙古科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD824.2
【参考文献】
相关期刊论文 前6条
1 钟维良;露天多排深孔爆破孔网参数的确定[J];爆破;1998年02期
2 姚金阶,朱以文;岩体爆破参数设计的神经网络模型[J];爆破;2005年02期
3 王以贤;余永强;杨小林;褚怀保;;基于爆破漏斗试验的煤体爆破参数研究[J];爆破;2010年01期
4 周志华,张金山,刘勤;基于人工神经网络的爆破震动速度峰值的预报[J];包头钢铁学院学报;2003年01期
5 邹定祥;计算露天矿台阶爆破块度分布的三维数学模型[J];爆炸与冲击;1984年03期
6 张成良;杨阳;梁开水;程康;祝文化;;岩壁梁爆破参数优化的神经网络模型[J];工程爆破;2006年01期
本文编号:1823238
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1823238.html