三轴加载下煤岩脉冲水力压裂扩缝机制研究
本文选题:脉冲水力压裂 + 脉冲频率 ; 参考:《岩土力学》2017年04期
【摘要】:为了研究煤岩脉冲水力压裂扩缝机制,利用三轴加载脉冲水力压裂试验系统,分别从改变脉冲频率和压裂液黏度两个方面对煤岩进行了水力压裂室内试验。试验结果表明:脉冲压力和声发射对压裂过程的响应情况可将煤岩脉冲水力压裂扩缝过程分为零散萌生、均匀扩展、突变贯通和破裂终止4个阶段,其中声发射定位点空间展布的平均速率在均匀扩展和突变贯通阶段较零散萌生阶段分别提高了4.6倍和9.6倍;声发射b值曲线的趋势显示,均匀扩展阶段煤岩内部以小尺度的微裂纹破裂为主,突变扩展阶段煤岩内部出现了较大尺度主裂缝扩展,并且部分b值曲线呈现出山脊线状与阶梯状相结合的特点;在达到最佳压裂脉冲频率前,高频脉冲压力作用的煤岩,扩缝过程的均匀扩展阶段和突变贯穿阶段的延续时间比低频对应的延续时间短;随着压裂液黏度增高,扩缝过程均匀扩展阶段的延续时间呈缩短趋势,但突变贯穿阶段的延续时间却有增长的趋势。
[Abstract]:In order to study the fracture expansion mechanism of coal and rock pulse hydraulic fracturing, hydraulic fracturing laboratory tests of coal and rock were carried out by using triaxial loading pulse hydraulic fracturing test system from two aspects of changing pulse frequency and fracturing fluid viscosity. The experimental results show that the pulse pressure and acoustic emission response to the fracturing process can be divided into four stages: scattered initiation, uniform expansion, sudden transfixion and fracture termination. Among them, the average rate of the spatial distribution of the acoustic emission positioning point is 4.6 times and 9.6 times higher than that of the scattered initiation stage in the uniform expansion and sudden transition stage, respectively, and the trend of the b value curve of acoustic emission is shown. In the homogeneous spreading stage, the microcracks in coal and rock are mainly small scale cracks, and in the sudden spreading stage there are large scale main cracks in the coal and rock, and some b value curves show the characteristics of the combination of ridge line and step shape. Before the optimum fracturing pulse frequency is reached, the extending time of the uniform spreading stage and the sudden break through stage of the fracture expansion process is shorter than that of the low frequency corresponding to the fracturing fluid under high frequency pulse pressure, and with the increase of the fracturing fluid viscosity, The extension time of the uniform spreading stage in the process of joint expansion is shortened, but the duration of the sudden change is increasing.
【作者单位】: 中南大学有色金属成矿预测与地质环境监测教育部重点实验室;中南大学地球科学与信息物理学院;湖南科技大学页岩气资源利用湖南省重点实验室;
【基金】:国家自然科学基金项目(No.41302124) 页岩气资源利用湖南省重点实验室开放基金(No.E21425) 中南大学中央高校基本科研业务费专项资金资助项目(No.2016zzts433)~~
【分类号】:TD315
【相似文献】
相关期刊论文 前10条
1 ;数值模拟水力压裂裂隙的扩展和增大[J];煤矿安全;2008年06期
2 连志龙;张劲;王秀喜;吴恒安;薛炳;;水力压裂扩展特性的数值模拟研究[J];岩土力学;2009年01期
3 李洋;;水力压裂开采页岩气对环境有害[J];国外油田工程;2010年09期
4 杨维;白治平;王春孝;;子长采油厂水力压裂与产量关系评价[J];硅谷;2010年19期
5 赵宝滔;牛晓东;孟凡册;;水力压裂施工方案研究[J];科技资讯;2012年15期
6 杨景宁;;美国国会简报关注水力压裂引发的环境和地震问题[J];国际地震动态;2013年04期
7 洪世铎;水力压裂理论[J];石油钻采工艺;1980年01期
8 刘蜀知,任书泉;水力压裂裂缝三维延伸数学模型的建立与求解[J];西南石油学院学报;1993年S1期
9 ;水力压裂法[J];环境与生活;2012年05期
10 乔继彤,张若京,姚飞,蒋阗;水力压裂的二维温度场分析[J];同济大学学报(自然科学版);2000年04期
相关会议论文 前10条
1 张若京;;地下能源开发的重要技术——水力压裂[A];力学与西部开发会议论文集[C];2001年
2 刘建军;杜广林;薛强;;水力压裂的连续损伤模型初探[A];第十二届全国疲劳与断裂学术会议论文集[C];2004年
3 李连崇;梁正召;李根;马天辉;;水力压裂裂缝穿层及扭转扩展的三维模拟分析[A];第十一次全国岩石力学与工程学术大会论文集[C];2010年
4 李传华;陈勉;金衍;;层状介质水力压裂模拟实验研究[A];岩石力学新进展与西部开发中的岩土工程问题——中国岩石力学与工程学会第七次学术大会论文集[C];2002年
5 刘闯;刘合;李向阳;吴恒安;;页岩气水平井水力压裂多缝间距优化研究[A];中国力学大会——2013论文摘要集[C];2013年
6 杨丽芳;张陈芳;阳国桂;王路伟;;油田水力压裂过程中示踪砂用量计算[A];第三届全国核技术与应用学术研讨会会议资料文集[C];2012年
7 李家祥;张文泉;;井下水力压裂应力测量[A];首届全国青年岩石力学学术研讨会论文集[C];1991年
8 朱礼军;陈勉;金衍;;松软地层水力压裂缝宽预测[A];新世纪岩石力学与工程的开拓和发展——中国岩石力学与工程学会第六次学术大会论文集[C];2000年
9 阳国桂;李锦富;;同位素水力压裂示踪用示踪剂的研制[A];第三届全国核技术与应用学术研讨会会议资料文集[C];2012年
10 鄢旭彬;饶少莹;任海龙;王军红;;水力压裂工艺技术的应用[A];油气藏改造压裂酸化技术研讨会会刊[C];2014年
相关重要报纸文章 前10条
1 史蒂芬·科恩 编译 王林;对水力压裂法应该宽容一些[N];中国能源报;2012年
2 卢克·亨特 王林 编译;水力压裂法在东南亚难应用[N];中国能源报;2013年
3 苏珊·布兰特利 安娜·美耶_撤,
本文编号:1859561
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1859561.html