某300吨级矿用自卸车后桥壳的结构设计与优化
本文选题:后桥壳 + 有限元分析 ; 参考:《中南林业科技大学》2017年硕士论文
【摘要】:近年来,矿用自卸车因承载能力强大而得到了人们广泛青睐,在我国的销量逐年稳定递增,并实现了 300吨级矿用自卸车国产化。矿用自卸车驱动后桥系统是汽车传动系的总成之一,其基本功用是在承受载荷的同时,将发动机输出的扭矩最后传递到驱动轮,以达到车辆行驶的目的。后桥壳是驱动后桥系统的基体,在车辆行驶过程中需承受多种载荷的作用,其结构设计直接影响矿用自卸汽车的安全性和可靠性,是自卸车极为重要的安全件和功能件。通常后桥壳的结构设计凭借经验和手册,设计的产品由于复杂的工况环境无法采用经典力学进行强度校核,设计师凭经验会采用保守设计,这样必然导致设计产品笨重且不合理。本文基于某300吨级矿用自卸车整车的参数和工况分析,对矿用自卸车后桥壳进行了以下几个方面的研究:首先,调研国内外矿用自卸车不同的车型,结合大量文献,列出几个品牌公司畅销款型整车的基本尺寸;根据A型悬架和三连杆悬架优缺点的对比,确定后悬悬架的设计方案,并给出后悬的基本结构尺寸。其次,由于车架和后桥系统紧密相连,根据车架承载情况,计算后桥壳的受力大小,通过校核连接紧固件,确定后桥壳的基本尺寸;并对后桥壳焊接工艺进行分析研究。再次,对后桥壳结构进行整体设计,绘制二维图纸,并建立三维实体模型;利用有限元分析软件ANSYS workbench,建立有限元模型,基于正常工况和极端工况,对所设计的后桥壳结构进行强度分析。最后,采用正交试验设计给出样本,通过有限元软件计算响应值,即可构建Krigng代理模型。本文采用多岛遗传算法(MIGA)对后桥壳进行优化设计,并与非支配排序遗传算法(NSGA-II)优化结果进行对比,两种方法可确保优化结果的合理性,而较优化前,优化后的后桥壳重量得到了大幅度降低。
[Abstract]:In recent years, the mine dump truck has been widely favored by people because of its strong carrying capacity. The sales volume in our country has been steadily increasing year by year, and the 300 ton mine dump truck has been made locally. The driving rear axle system of mine dump truck is one of the assemblies of the automobile transmission system. Its basic function is to transfer the torque of engine output to the driving wheel at the same time of bearing the load, so as to achieve the purpose of driving the vehicle. The rear axle housing is the base of driving the rear axle system, and it must bear many kinds of loads in the driving process of the vehicle. Its structure design directly affects the safety and reliability of the mine dump truck, and is an extremely important safety and function part of the dump truck. Usually, the structural design of the rear axle shell depends on the experience and manual, the design product can not be checked by classical mechanics because of the complex working condition environment, the designer will adopt conservative design based on the experience. This will inevitably lead to heavy and unreasonable design products. Based on the analysis of the parameters and working conditions of a 300-ton mine dump truck, this paper studies the rear axle shell of the mine dump truck in the following aspects: firstly, it investigates the different models of the mine dump truck at home and abroad, combined with a large number of documents. According to the comparison of advantages and disadvantages between A-type suspension and three-link suspension, the design scheme of rear suspension is determined, and the basic structural dimensions of rear suspension are given. Secondly, because the frame and the rear axle system are closely connected, according to the loading condition of the frame, the force size of the rear axle shell is calculated, and the basic size of the rear axle shell is determined by checking the fastener, and the welding technology of the rear axle shell is analyzed and studied. Thirdly, the structure of rear axle shell is designed as a whole, 2D drawing is drawn, and three-dimensional solid model is established. The finite element model is established by using finite element analysis software ANSYS workbench, which is based on normal and extreme working conditions. The strength of the rear axle shell is analyzed. Finally, the Krigng agent model can be constructed by using the orthogonal test design to give the sample, and the response value is calculated by the finite element software. In this paper, multi-island genetic algorithm (MIGA) is used to optimize the design of the rear axle shell, and the optimization results are compared with the results of the non-dominated sorting genetic algorithm (NSGA-II). The two methods can ensure the rationality of the optimization results, but before the optimization, the two methods can ensure the rationality of the optimization results. The weight of the optimized rear axle shell is greatly reduced.
【学位授予单位】:中南林业科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD50
【相似文献】
相关期刊论文 前10条
1 童本杰;许振华;;后桥壳组件热套专机及工艺[J];机械制造;1983年06期
2 李林;;后桥壳总成生产线焊接工艺及关键设备[J];现代零部件;2011年04期
3 李良福;;汽车后桥壳轴颈的制造新工艺[J];金属成形工艺;1997年04期
4 邹龙;;柔性化后桥壳大法兰孔攻螺纹夹具[J];金属加工(冷加工);2014年05期
5 陈兴国;韦春芳;谢香卫;覃辉翔;;后桥壳脉冲焊的应用[J];装备制造技术;2014年04期
6 唐应时;段心林;李克安;李克;肖力军;;基于整车虚拟仿真的某越野车后桥壳计算分析[J];湖南科技大学学报(自然科学版);2006年03期
7 ;进口电动轮后桥壳部件国产化改造见成效[J];有色设备;2010年03期
8 李长生;周天飞;袁福安;;一种中型后桥壳铸造工艺优化设计与应用[J];铸造;2014年05期
9 王明志;;后桥壳本体大环面装焊不平的原因分析及解决方法[J];金属加工(热加工);2014年10期
10 奚士良;EQl40后桥壳的铸造实践[J];铸造;1991年04期
相关会议论文 前8条
1 龙思源;郎维凡;彭文华;郭勇;;微车后桥壳总成小变形焊接技术研究与应用[A];四川省第九届(2009年)汽车学术交流年会论文集[C];2009年
2 韦军;刘菁;;中后桥壳总成的柔性化制造技术开发[A];2011年安徽省科协年会——机械工程分年会论文集[C];2011年
3 刘志华;苗祥利;卢宏军;尚丽霞;;汽车后桥壳总成加工生产线的探讨[A];第四届河南省汽车工程科技学术研讨会论文集[C];2007年
4 胡玉梅;;应用微机有限元计算汽车后桥壳的强度和刚度[A];四川省汽车工程学会第一届二次年会论文集[C];1991年
5 唐自玉;朱华炳;刘光复;胡有树;;后桥壳生产物流系统计算机辅助规划[A];2004“安徽制造业发展”博士科技论坛论文集[C];2004年
6 诸洪;谢勇;魏德刚;骆远福;;江铃轻型车后桥壳机器人焊接线研究[A];四川省汽车工程学会三届一次学术年会论文集[C];1999年
7 万萍;;后桥壳两端底板固定盘螺纹孔加工[A];2005年中国客车学术年会论文集[C];2005年
8 郭勇;帅业;何长春;张舫舟;;汽车后桥壳总成自动化焊接生产线的研制[A];四川省汽车工程学会、成都市汽车工程学会2003年学术年会论文集[C];2003年
相关硕士学位论文 前6条
1 孔剑;电动轮矿用自卸车后桥壳疲劳寿命分析[D];湖南大学;2015年
2 李活;某300吨级矿用自卸车后桥壳的结构设计与优化[D];中南林业科技大学;2017年
3 郝克巧;微车后桥壳设计加工中的相关技术研究[D];南京理工大学;2010年
4 赵宇峰;汽车后桥壳机械热胀成形有限元模拟研究[D];吉林大学;2010年
5 李伟;轻型车后桥壳液压胀形的有限元分析与试验研究[D];吉林大学;2004年
6 聂笃忠;矿用自卸车后桥壳疲劳可靠性分析[D];西安工业大学;2014年
,本文编号:1880415
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1880415.html