不同过滤驱动力对细粒煤过滤脱水效果的影响研究
本文选题:细粒煤 + 过滤脱水 ; 参考:《太原理工大学》2017年硕士论文
【摘要】:近年来,随着采煤机械化程度的提高,采出煤中细粒煤含量大幅度增加,煤炭利用前的洗选加工是减少污染物排放量的经济有效手段,在煤炭洗选过程中,为将煤和矸石等杂质解离又要进行煤炭细粉碎,这就更加大了选煤厂中细粒煤的含量。细粒煤的流失不仅造成资源浪费,同时也会污染环境,因此要加强细粒煤的回收;现阶段,我国选煤厂基本上采用的都是湿法选煤技术来对煤炭进行分选,产品水分是评价煤炭质量的重要指标。洗选过程中细粒煤含量的增多,会严重恶化脱水效果,导致产品水分指标难以保证,因此,对细粒煤脱水效果优化的探究是当前具有经济效益和现实意义的重大课题。本论文通过设计并自制的有机玻璃真空-气压两阶段联合过滤脱水设备,对试验用煤分别进行了细粒煤真空过滤脱水工艺条件优化、细粒煤气压过滤脱水工艺条件优化和真空-气压两阶段联合过滤脱水工艺条件优化,探究出在各不同过滤驱动力下的最佳操作工艺条件。同时,论文选取了7种不同类型的表面活性剂、6种聚丙烯酰胺以及聚合氯化铝分别在各过滤驱动力的最佳操作工艺条件下对细粒煤进行助滤脱水试验,并对比其效果和规律,优选出各助剂类型中的最佳药剂种类及其用量;并对优选出的各类型典型药剂,在各过滤驱动力下进行两两或三者联合助滤及对比;还通过自制的新型复配助剂,进行了各过滤驱动力下的助滤探究。最后,通过对各助滤药剂进行接触角和表面张力的测定,从微观机理上探究其对细粒煤的助滤作用;并对在不同过滤驱动力作用下形成的滤饼结构特征进行了研究,探索其规律。试验结果及各探究表明:1.通过单因素试验法,细粒煤真空过滤脱水最佳操作工艺条件为:煤浆浓度为300g/L,过滤真空度为0.06MPa,抽滤时间4min,细粒煤处理量为100kg/(m2·h),此时滤饼含水率为:26.08%;细粒煤气压过滤脱水工艺条件优化结果为:煤浆浓度为450g/L,气压大小为0.6MPa,压滤时间3min,细粒煤处理量为200kg/(m2·h),此时滤饼含水率为:22.03%;细粒煤真空-气压两阶段联合过滤脱水工艺条件优化结果为:煤浆浓度为550g/L,先用真空度为0.06MPa的负压抽滤3.5min,再用0.6Mpa的气压加压过滤2.5min,细粒煤处理量为150kg/(m2·h),由以上工艺条件可得滤饼含水率为18.37%。2.无论是在细粒煤真空抽滤、气压过滤以及真空-气压两阶段联合过滤脱水作用下,选用的表面活性剂对试验用煤的助滤效果排序都为:非离子表面活性剂阴离子表面活性剂阳离子表面活性剂,且七种表面活性剂中效果最佳的为Span-80,用量仅为60g/t;选用的聚丙烯酰胺对试验用煤的助滤效果排序都为:阴离子阳离子非离子,且在每种同一类型不同分子量的聚丙烯酰胺助滤时,分子量1500万的总是比分子量600万的助滤效果要好,过滤后滤饼含水率更低;自制的复配助剂中Span-80∶煤油的最佳复配比例为1∶30,且复配药剂各组分间发生了协同作用。3.用优选出的典型药剂分别在各过滤形式最佳工艺操作条件下进行联合助滤试验都表明,在药剂两两联合助滤时,Span-80+HPAM(1500万)组合助滤效果最优;三种典型药剂组合后比任意两种典型药剂的组合助滤效果都要好。4.对真空-气压两阶段联合配以药剂对细粒煤脱水极限试验探究表明:当用真空-压力两阶段联合配以适当的药剂或其组合时,细粒煤浆脱水极限能够达到使滤饼含水率降至13%左右。
[Abstract]:In recent years, with the improvement of mechanization of coal mining, the content of fine coal in coal is greatly increased. The washing process before coal utilization is an economical and effective means to reduce the emission of pollutants. In the process of coal washing, the removal of the impurities such as coal and gangue and the fine pulverization of coal in the process of coal washing, which makes the fine coal in the coal preparation plant bigger The loss of fine coal not only causes the waste of resources, but also pollutes the environment, so it is necessary to strengthen the recovery of fine coal. At the present stage, the coal preparation plant in our country basically adopts the wet method of coal preparation to separate the coal, and the moisture of the product is an important index to evaluate the quality of the coal. It is difficult to guarantee the water index of the product. Therefore, the research on the optimization of the effect of the fine coal dehydration is a major issue with economic and practical significance. This paper has been designed and prepared by the two stage combined filtration and dewatering of the vacuum pressure of the organic glass, and the fine coal vacuum is carried out for the test coal. Optimization of filtration and dehydration process conditions, optimization of fine coal pressure filtration dehydration process conditions and optimization of the vacuum pressure two stage combined filtration process conditions are optimized to explore the optimum operating conditions under various driving forces of various filters. At the same time, 7 different types of surface active agents, 6 kinds of polyacrylamide and polychlorination are selected. Under the optimum operating conditions of the filter driving force, aluminum was tested for filtration dehydration of fine coal, and its effect and law were compared, and the best agent types and their dosage were selected, and 22 or three of the selected typical agents were combined and compared under the driving force of each filter. In the end, through the determination of the contact angle and surface tension of each filter agent, the filtration effect on fine coal is explored from the micro mechanism, and the structure characteristics of the filter cake formed under the action of different filter driving forces are studied and the rules are explored. The experimental results and various inquisition show that: 1. through single factor test, the optimum operating conditions of fine coal vacuum filtration dehydration are: coal slurry concentration 300g/L, filtration vacuum degree 0.06MPa, filtration time 4min, fine coal treatment amount of 100kg/ (m2. H), at this time the water content of filter cake is 26.08%; fine coal pressure filtration dehydration process conditions optimization junction The results are as follows: the coal slurry concentration is 450g/L, the pressure is 0.6MPa, the pressure filtration time is 3min, the fine coal is treated with 200kg/ (m2. H), and the water content of the filter cake is 22.03%. The optimization result of the two stage combined filtration dehydration process of fine coal vacuum pressure pressure is that the coal slurry concentration is 550g/L, and the vacuum degree is the negative pressure of 0.06MPa, then the 0.6Mpa gas is used. Pressure pressure filtration 2.5min, fine coal treatment amount of 150kg/ (m2. H), from the above process conditions can be obtained the cake moisture content is 18.37%.2., whether it is in fine coal vacuum filtration, pressure filtration and vacuum pressure two stages combined filtration dehydration effect, the selected surface active agent for the testing of coal for the filtration effect order is: nonionic surface live. The cationic surfactant of the anionic surfactants, and the best effect of the seven surfactants, is Span-80, only 60g/t. The selection of polyacrylamide on the filtration effect of the test coal is not ion cation, and the molecular weight is 15 in each kind of polyacrylamide with the same type of different molecular weight. 00 ten thousand is always better than molecular weight 6 million, and the water content of filter cake is lower after filtration; the optimum compound ratio of Span-80: kerosene is 1: 30 in the homemade compound auxiliary agent, and the synergistic effect of the compound agent.3. is combined with the optimum process operation conditions of each filtration form, respectively. The filter aid test shows that the combination of Span-80+HPAM (15 million) is the best for the combination of Span-80+HPAM (15 million), and the combination of the three typical medicaments is better than the combination of any two typical medicaments, and the combination of the vacuum pressure two stage combined with the medicament to the fine coal dehydration limit test shows that the two order of vacuum pressure is used. With the combination of appropriate agents or combinations, the moisture limit of the fine coal slurry can reach about 13% of the moisture content of the cake.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD94
【相似文献】
相关期刊论文 前10条
1 张英杰;巩冠群;谢广元;谢领辉;;细粒煤脱水研究综述[J];中国煤炭;2010年06期
2 郭玲香;新型阳离子聚合物对细粒煤的助滤作用研究[J];中国矿业;2000年03期
3 夏畅斌,黄念东,何绪文;表面活性剂对细粒煤脱水的试验研究[J];煤炭科学技术;2001年03期
4 石常省,谢广元,欧阳永明;十字流过滤在细粒煤脱水中的应用研究[J];煤炭技术;2003年06期
5 戚家伟,朱书全,王仁哲,姚春彦,崔广文;选择性双向絮凝技术分选极细粒煤的试验研究[J];选煤技术;2004年03期
6 朱书全,戚家伟,姚春彦,解维伟;提高选择性双向絮凝分选极细粒煤效果的途径[J];选煤技术;2004年04期
7 丁志杰;王祖讷;;系列药剂量分选超细粒煤试验研究[J];洁净煤技术;2005年04期
8 焦红光;谌伦建;铁占续;;细粒煤重选设备的技术现状与分析[J];煤炭工程;2006年01期
9 唐利刚;谢广元;石常省;;细粒煤脱硫降灰的途径探讨[J];选煤技术;2007年01期
10 凌丽伟;;细粒煤干燥技术及应用[J];中国煤炭工业;2007年07期
相关会议论文 前2条
1 董宪姝;杜圣星;;高灰细泥细粒煤浮选技术进展[A];纪念中国煤炭学会成立50周年暨2012全国选煤学术交流会论文集[C];2012年
2 石常省;张敏;刘静;;高灰极难选细粒煤泥的分选研究[A];2011年全国选煤学术交流会论文集[C];2011年
相关博士学位论文 前4条
1 张博;基于微波能量与介质协同作用的细粒煤磁选脱硫机理研究[D];中国矿业大学;2015年
2 于晓东;小于6mm细粒煤复合式干法分选特性研究[D];中国矿业大学;2017年
3 王立艳;褐煤中微生物筛选及胶红酵母对细粒煤的表面改性作用[D];中国矿业大学(北京);2012年
4 刘爱荣;气体辅助细粒煤离心力场分选规律研究[D];太原理工大学;2014年
相关硕士学位论文 前3条
1 王辉;低灰细粒煤泥絮凝浮选试验研究[D];中国矿业大学;2016年
2 武乐鹏;不同电解质对细粒煤电化学脱水效果的影响研究[D];太原理工大学;2010年
3 李立功;彬长细粒煤浮选—絮凝工艺组合试验研究[D];西安科技大学;2011年
,本文编号:1916079
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1916079.html