上榆泉矿10~#煤层顺向煤柱下矿压显现规律研究
本文选题:近距离煤层 + 大采高综放 ; 参考:《太原理工大学》2017年硕士论文
【摘要】:近距离煤层在我国较为普遍,分布广泛。我国煤矿大都使用长壁、下行开采方法,且使用全部垮落法管理顶板,这引起了很多采空区下近距离煤层的开采问题,也越来越受到人们的重视。近距离煤层大采高综放开采,由于煤层开采厚度很大,相对于普通采高,围岩活动范围明显增大,顶煤采出后,容易垮落的岩层在短时间内无法充满采空区,传统意义上的基本顶在这种情况下无法形成稳定的“砌体梁”结构,转化为直接顶岩层,形成类似于“悬臂梁”结构。上覆岩层结构以及层间顶板的完整性和强度在上煤层开采时已经受到损伤,下煤层开采时,围岩应力受到二次采动影响会引起一系列新的矿山压力现象,比如工作面更容易出现顶板冒漏和压架事故。受上煤层遗留的顺向煤柱应力集中的影响,煤柱下采场空间支架载荷通常都很大,工作面煤壁片帮严重,支架容易出现低头、损坏和压架等现象,围岩更难控制。本文以上榆泉煤矿10~#煤层I031001综放面为研究对象,分析采空区下和煤柱下上覆岩层结构特征和矿山压力显现规律。将两者进行对比研究,研究结果表明:(1)根据煤层覆岩条件和开采方法,分析下煤层开采时上覆岩层破断、垮落和稳定情况,得出采空区下上覆岩层形成“顶煤+直接顶岩层+基本顶岩层+垮落带岩层+裂隙带岩层”结构,煤柱下上覆岩层形成“拱—传递岩梁结构”。(2)采空区下和煤柱下来压步距差别不大;受到提前卸压处理的影响,煤柱下初次来压动载系数为1.51,比较大;受煤柱集中应力的影响,煤柱下非来压期间支架载荷较大,是采空区下支架载荷的120%,采空区下周期来压动载系数是煤柱下的118%。(3)理论估算法和实测法所得支架工作阻力相差不大。采空区下和煤柱下理论计算的支架工作阻力最大,分别为14822KN、14800KN,相差很小,与实际观测符合。理论计算法、最大载荷法和均方差法总平均值为13078KN,可知,液压支架ZFY10200/25/42D额定工作阻力无法满足实际生产需要的额定工作阻力。(4)工作面支架安全阀经常开启、煤壁片帮严重,架前煤层易冒落、支架顶梁接顶不充分、支架顶梁大幅度的低头,由此可知,ZFY10200/25/42D无法满足工作面安全、高效生产的要求。对比二柱式、四柱式放顶煤支架的优缺点,推荐使用额定工作阻力不小于15000 KN的四柱式综放支撑掩护式液压支架。
[Abstract]:The near-distance coal seam is widespread and widely distributed in our country. Most coal mines in our country use longwall and downlink mining methods, and use all the caving method to manage roof, which has caused many problems of mining near coal seam under goaf, and has also been paid more and more attention by people. Due to the thickness of coal seam is very large, the range of surrounding rock activity is obviously increased compared with ordinary mining height. After the top coal mining, the strata which are easy to collapse can not be filled with goaf in a short time. In this case, the traditional basic roof can not form a stable "masonry beam" structure, which can be transformed into a direct top rock layer, forming a structure similar to "cantilever beam". The integrity and strength of the overlying strata and the interstory roof have been damaged in the mining of the upper coal seam, and the stress of the surrounding rock will be affected by the secondary mining during the mining of the lower coal seam, which will cause a series of new mine pressure phenomena. For example, the face is more prone to roof leakage and pressure frame accident. Affected by the stress concentration of the vertical pillar left over from the upper coal seam, the space support load under the coal pillar is usually very large, the coal face wall cover is serious, the support is prone to bow down, damage and pressure frame, etc., the surrounding rock is more difficult to control. In this paper, I031001 fully mechanized caving face of 10 # coal seam in Yuquan coal mine is studied, and the structural characteristics of overlying strata under goaf and coal pillar and the law of mine pressure appearance are analyzed. The results show that according to the overburden condition and mining method of coal seam, the overlying strata are broken, caved down and stable during coal seam mining. It is concluded that the overlying strata under the goaf form the structure of "the crack zone of the rock layer in the caving zone of the basic top rock layer of the direct top rock formation of the top coal". Under the coal pillar overburden formation "arch-transfer rock beam structure". 2) the gap between the goaf and the coal pillar is not different from that of the coal pillar, and the initial dynamic loading coefficient under the pillar is 1.51, which is influenced by the pressure-relief treatment, and is affected by the concentration stress of the coal pillar. The support load under the coal pillar is larger than that under the coal pillar during the non-pressure period, which is 120 of the support load under the goaf, and the coefficient of dynamic load under the next period of the goaf is the 118.1% under the coal pillar) the working resistance of the support obtained by the theoretical estimation method and the actual measurement method is not different from that obtained by the actual measurement method. The working resistance calculated under goaf and coal pillar is 14822KN / 14800KN respectively, which is in good agreement with the actual observation. The theoretical calculation method, the maximum load method and the mean square error method are 13078KNs. It can be seen that the ZFY10200/25/42D rated working resistance of the hydraulic support cannot meet the rated working resistance of practical production.) the safety valve of the support in the working face is often opened, and the coal wall flake is serious. The coal seam in front of the frame is easy to fall, the top beam of the support is not fully connected, and the top beam of the support is lowered by a large margin. Therefore, it can not meet the requirements of safe and efficient production of the working face by ZFY 10200 / 25 / 42D. Compared with the advantages and disadvantages of two-column and four-pillar caving coal caving support, it is recommended to use four-pillar fully mechanized caving support cover hydraulic support with rated working resistance of not less than 15000 KN.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD323
【参考文献】
相关期刊论文 前10条
1 李龙清;折智;肖江;赵志良;李雪伟;张杰;;近距离采空区下特厚煤层综放开采可行性研究[J];煤炭工程;2015年06期
2 李化敏;蒋东杰;李东印;;特厚煤层大采高综放工作面矿压及顶板破断特征[J];煤炭学报;2014年10期
3 孔宪法;杨永康;康天合;柴肇云;郭俊庆;郭帅;;采空区下近距离煤层工作面支架支护强度确定[J];矿业研究与开发;2013年06期
4 李志刚;高圣元;李春睿;;近距离煤层采空区下片帮冒顶控制技术[J];煤矿开采;2013年04期
5 鞠金峰;许家林;朱卫兵;王路军;;神东矿区近距离煤层出一侧采空煤柱压架机制[J];岩石力学与工程学报;2013年07期
6 郭帅;孔宪法;康天合;王成帅;;采空区下近距离煤层综采工作面支架载荷分析[J];煤矿安全;2013年05期
7 秦波涛;鲁义;殷少举;曹凯;王美光;;近距离煤层综放面瓦斯与煤自燃复合灾害防治技术研究[J];采矿与安全工程学报;2013年02期
8 胡金鉴;周广飞;武晓明;杨科;;近距离采空区下大采高综采面矿压演化规律研究[J];煤炭工程;2012年08期
9 于雷;闫少宏;刘全明;;特厚煤层综放开采支架工作阻力的确定[J];煤炭学报;2012年05期
10 许家林;朱卫兵;王晓振;张志强;;沟谷地形对浅埋煤层开采矿压显现的影响机理[J];煤炭学报;2012年02期
相关博士学位论文 前2条
1 鞠金峰;浅埋近距离煤层出煤柱开采压架机理及防治研究[D];中国矿业大学;2013年
2 张百胜;极近距离煤层开采围岩控制理论及技术研究[D];太原理工大学;2008年
相关硕士学位论文 前2条
1 张世武;极近距离煤层开采巷道支护技术研究[D];太原理工大学;2016年
2 田小龙;近距离煤层群自燃火灾防治技术的研究与应用[D];太原理工大学;2006年
,本文编号:1939053
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1939053.html