东峰煤矿采空区地表移动变形分析
本文选题:东峰煤矿 + 地面变形 ; 参考:《西安科技大学》2017年硕士论文
【摘要】:论文以府谷县东峰煤矿采空区为研究对象,在收集研究区相关地质资料的基础上,分析采空区上部岩层及地表移动变形特征与影响因素。根据概率积分法,对研究区的地表移动变形值进行了理论计算,在FLAC3D数值模拟软件的支持下,对煤层开采所引起的地表移动变形进行了数值模拟,以此得到以下几点结论:(1)通过对研究区的开采历史与现状分析,对地表移动变形现状与特征、地表变形形式与影响范围等进行了总结阐述。研究区地表变形主要有地面塌陷和地裂缝两种,地面塌陷大多呈不规则的长方形。(2)在上述工作的基础上,运用概率积分法对地表移动变形参数以及变形值进行理论计算,地表移动变形最大沉降量为3.905m比实际监测的最大下沉值3.14m偏大0.865m,并分析其偏大原因。并通过相同方法对研究区未来开采所引起的地表移动变形进行了预测,分析研究区未来的地表移动变形形式。(3)在FLAC3D数值模拟软件的基础上,通过弹性求解法得到了初始应力场与初始应力场最大不平衡力变化规律;通过下沉位移云图和下沉变化位移曲线图分析得出,煤层开采后,开采沉降量与地表影响范围都随开采量的增加逐渐增大,开采初期,采空区上部岩层下沉变形关于采空区对称,靠近切眼的监测点其下沉速度大于远离切眼。随着进一步开采,地表下沉变形关于采空区对称,采空区周围岩层变形向掘进反方向偏移,靠近切眼的监测点其下沉速度逐渐减小,离切眼较远的监测点下沉速度逐渐增大;通过水平变形云图和水平位移变化曲线图分析可得,地表水平变形关于采空区对称,地表变形范围与变形量随着开采的推进增大,采空区中心的水平位移为零。开采初期,地表水平方向的变形速度较快,采空区两侧的监测点向采空区上部地表区域移动。关于采空区对称的两点位移大小相同,越靠近外侧的监测点其移动变形值越大。随着开采的推进,地表水平变形向开采前进方向偏移。
[Abstract]:This paper takes the goaf of Dongfeng Coal Mine in Fugu County as the research object and analyzes the deformation characteristics and influencing factors of the upper strata and surface movement of the goaf on the basis of collecting the relevant geological data of the study area. According to probabilistic integration method, the surface movement deformation of the study area is calculated theoretically, and the surface movement deformation caused by coal seam mining is numerically simulated with the support of FLAC3D numerical simulation software. Based on the analysis of mining history and present situation in the study area, the present situation and characteristics of surface movement and deformation, the form and influence range of surface deformation are summarized and expounded. There are mainly two kinds of ground subsidence and ground fissure in the study area, most of which are irregular rectangle. (2) on the basis of the above work, the probability integral method is used to calculate the deformation parameters and the deformation value of the ground movement. The maximum subsidence of surface movement and deformation is 3.905m, which is 0.865 m higher than that of the monitored maximum subsidence value of 3.14 m, and the reasons are analyzed. The surface movement deformation caused by the future mining in the study area is predicted by the same method. The future surface movement deformation form of the study area is analyzed based on the FLAC3D numerical simulation software. The law of maximum unbalanced force of initial stress field and initial stress field is obtained by means of elastic solution method, and through the analysis of subsidence displacement cloud diagram and subsidence displacement curve, it is concluded that after coal seam mining, the maximum unbalance force of initial stress field and initial stress field is changed. At the beginning of mining, the subsidence of the upper strata of the goaf is symmetrical to the goaf, and the subsidence velocity of the monitoring point near the cutting hole is larger than that of the far hole cutting. With the further mining, the subsidence deformation of the surface is symmetrical to the goaf, the deformation of the rock layer around the goaf is shifted to the reverse direction of the excavation, the subsidence velocity of the monitoring point near the cutting hole decreases gradually, and the subsidence velocity of the monitoring point farther away from the cut hole increases gradually. Through the analysis of the cloud map of horizontal deformation and the curve of change of horizontal displacement, it can be obtained that the horizontal deformation of the surface is symmetrical to the goaf, the range and quantity of surface deformation increase with the advance of mining, and the horizontal displacement of the center of goaf is zero. In the early stage of mining, the deformation speed of surface horizontal direction is faster, and the monitoring points on both sides of goaf move to the upper surface area of goaf. The symmetrical two point displacement of the goaf is the same, and the displacement value of the monitoring point closer to the outside is larger. With the development of mining, the horizontal deformation of the surface deviates to the forward direction of mining.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD325
【参考文献】
相关期刊论文 前10条
1 邵小平;武军涛;张嘉凡;张杰;;上行开采覆岩裂隙演化规律与层间岩层稳定性研究[J];煤炭科学技术;2016年09期
2 毛歆燕;侯军林;;煤矿采空区地面塌陷预测方法探讨[J];中国煤炭地质;2015年03期
3 黄健民;邓雄文;胡让全;;广州金沙洲岩溶区地下水位变化与地面塌陷及地面沉降关系探讨[J];中国地质;2015年01期
4 韦峰;孟中华;;矿山地表塌陷区岩层移动监测监控[J];采矿技术;2015年01期
5 薛毅;;中国煤矿城市生态环境及其整治论析[J];湖北理工学院学报(人文社会科学版);2014年06期
6 王伟东;曲华;张培鹏;许斌;许丽娜;;充填采煤法控制地表下沉数值模拟[J];煤矿安全;2014年10期
7 张向东;王星;陈江;;基于概率积分法和数值模拟的采空塌陷区对高速公路影响的预测[J];世界科技研究与发展;2012年03期
8 孙学阳;夏玉成;;挤压构造应力及自重应力作用下的采煤沉陷对比实验[J];矿业安全与环保;2010年03期
9 蔡来良;吴侃;裴倩;陈爱宁;;矿区地表变形等值线图的自动绘制[J];湖南科技大学学报(自然科学版);2009年04期
10 孙灏;;利用IDL开发矿山开采沉陷预计系统的方法与应用[J];测绘标准化;2009年04期
相关博士学位论文 前3条
1 李培现;深部开采地表沉陷规律及预测方法研究[D];中国矿业大学;2012年
2 蔡来良;适宜倾角变化的开采沉陷一体化预测模型研究[D];中国矿业大学;2011年
3 张永波;老采空区建筑地基稳定性及其变形破坏规律的研究[D];太原理工大学;2005年
相关硕士学位论文 前2条
1 席莎;内蒙古自治区煤炭矿区地面塌陷严重程度分析[D];中国地质大学(北京);2012年
2 张诸林;两层采煤地面变形模拟研究[D];吉林大学;2012年
,本文编号:1961332
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1961332.html