萧县旗杆楼铁矿充水水源识别与矿坑涌水量预测
本文选题:充水水源 + 矿坑涌水量 ; 参考:《合肥工业大学》2017年硕士论文
【摘要】:识别矿坑充水水源,进行矿坑涌水量预测,不仅是金属矿山防治水措施、安全生产的前提,也是水环境保护的基础,更是矿山开发利用方案合理制定的支撑。旗杆楼铁矿地处黄淮河冲积平原,位于安徽省宿州市萧县境内。该铁矿为全隐伏的矿床,矿体主要赋存于奥陶系萧县组泥质灰岩、大理岩及白云质灰岩中。矿床开采时,含水层中的水可直接进入坑道,萧县组岩溶裂隙水为其直接充水水源;奥陶系下统马家沟组岩溶裂隙水间接流入矿坑,成为间接充水水源。对比该铁矿已有水文地质成果,本论文开展补充水文地质试验(抽水、注水试验),识别铁矿充水水源;借助同位素示踪理论,结合地下水中和的相关关系,对地下水进行溯源分析。运用解析法,分析计算矿坑正常涌水量12277m3/d。结合补充勘察结果,通过含水层、隔水层空间分布特征、研究区边界条件的概化、地下水动态特征,建立水文地质概念模型,在此基础上,利用有限差分原理,运用Visual Modflow数值模拟软件建立地下水系统数值模型。识别、并对数值模型验证后,预测矿区-500 m开采水平下矿坑初期涌水量为11791m3/d,稳定后正常涌水量约为8513 m3/d。研究区第三系富水性及透水性弱,且第四系底部存在为富水性、透水性极差的极弱含水层,对第四系上部孔隙水具有一定的“屏蔽”作用,由此得出的矿坑涌水量小于已有成果。为矿床未来安全生产、合理布置防治水措施提供参考指导作用。
[Abstract]:It is not only the premise of water prevention measures and safe production but also the foundation of water environment protection and the support of rational formulation of mine exploitation and utilization scheme to identify the source of water filling and forecast the water discharge of mine. Flag Tower Iron Mine is located in Huanghuai River Alluvial Plain, Suzhou County, Anhui Province. The ore deposit is a fully hidden ore deposit, and the orebody is mainly located in argillaceous limestone, marble and dolomitic limestone of the Ordovician Xiaoxian formation. The water in the aquifer can enter the tunnel directly, the karst fissure water of Xiaoxian formation is its direct water source, and the karst fissure water of the Lower Ordovician Majiagou formation flows indirectly into the mine pit as an indirect water source. In contrast to the existing hydrogeological achievements of the iron ore, this paper carries out supplementary hydrogeological tests (pumping and water injection tests) to identify the source of water filled with iron ore, and combines the correlation of groundwater neutralization with isotope tracer theory. Traceability analysis of groundwater is carried out. An analytical method is used to analyze and calculate the normal inflow of water from the pit at 12277m3 / d. Based on the results of supplementary survey, the hydrogeological conceptual model is established through the spatial distribution characteristics of aquifer and aquifer, the generalization of boundary conditions in the study area, and the dynamic characteristics of groundwater. On this basis, the finite difference principle is used. The numerical model of groundwater system is established by Visual Modflow numerical simulation software. After identifying and verifying the numerical model, it is predicted that the initial water inflow of mine pit is 11791m3 / d at the mining level of -500m, and the normal inflow after stabilization is about 8513 m3 / d. In the study area, the Tertiary system is rich in water and weak in permeability, and the bottom of the Quaternary system has very weak aquifers with rich water content and poor permeability, which has a certain "shielding" effect on the pore water of the upper part of the Quaternary system. The water inflow from the mine pit is less than the existing results. It provides a reference for the future safe production of ore deposit and reasonable arrangement of water prevention measures.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD742
【参考文献】
相关期刊论文 前10条
1 黄欢;;矿井涌水量预测方法及发展趋势[J];煤炭科学技术;2016年S1期
2 张艳飞;陈其慎;于汶加;柳群义;李颖;谭化川;;2015-2040年全球铁矿石供需趋势分析[J];资源科学;2015年05期
3 韩玉杰;陶月赞;周蜜;王菲;;基于数值法和解析法的矿坑涌水量预测对比分析[J];水利科技与经济;2014年10期
4 汪星晨;关英斌;张立;李金龙;马亚波;;单孔稳定流抽水试验渗透系数分析[J];河北工程大学学报(自然科学版);2014年03期
5 朱愿福;王长申;李彦周;潘扎荣;张亚平;;改进的灰色系统理论预测矿井涌水量[J];煤田地质与勘探;2014年04期
6 张洋;马云东;吴浩;;矿井充水水源识别的EW-UCA模型及应用[J];水文地质工程地质;2014年04期
7 林刘军;;矿井涌水量预测方法[J];科技创新与应用;2014年16期
8 丁三红;李张鹏;胡荣杰;;水化学特征法识别刘桥煤矿矿井充水水源[J];中州煤炭;2014年04期
9 周红卫;郭华;杨仪;;王浩铁矿矿坑涌水量预测方法的应用研究[J];勘察科学技术;2013年06期
10 冯宁;;矿井充水水源快速识别技术研究[J];煤;2013年09期
相关硕士学位论文 前6条
1 朱晶;丘陵地区矿山地下开采对地下水影响研究[D];合肥工业大学;2013年
2 李安娜;安徽省萧县旗杆楼铁矿矿坑涌水量预测研究[D];石家庄经济学院;2011年
3 李培月;非稳定流抽水试验确定越流承压含水层水文地质参数方法对比研究[D];长安大学;2011年
4 王利军;江苏省沛县姜梨园铁矿矿坑涌水量预测[D];合肥工业大学;2010年
5 蒋玲;和县龙塘沿铁矿矿坑涌水量预测研究[D];合肥工业大学;2009年
6 张瑞钢;基于GIS的潘一矿地下水环境特征分析及突水水源判别模型[D];合肥工业大学;2008年
,本文编号:2001346
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2001346.html