当前位置:主页 > 科技论文 > 矿业工程论文 >

印尼某难选矿铜硫矿分选试验研究

发布时间:2018-06-10 08:46

  本文选题:铜硫分离 + 新型抑制剂 ; 参考:《江西理工大学》2015年硕士论文


【摘要】:论文针对印尼某难选含铜铁硫矿的综合利用为研究目标,通过矿物组成分析,黄铜矿、黄铁矿纯矿物试验,和实际矿石分选试验,及红外光谱分析等,查明了该矿难选的原因,完成了铜硫分离及铁资源的综合利用。矿物组成研究表明,该矿铜品位1.53%、铁品位39.70%,硫品位13.46%,含银14.00g/t,含金小于0.5g/t。磁铁矿是含量最多金属矿物,其次是黄铁矿,少量赤铁矿,黄铜矿,铜蓝。含量比较稀少的有辉铜矿,菱锌矿,斑铜矿,白铅矿等,为微量。非金属矿物成分较为复杂,有石英,石榴石,方解石,透闪石,滑石,绢云母,含铁粘土矿物,绿帘石,绿泥石等。磁铁矿呈致密的粒状镶嵌集合体形成块状,而黄铁矿是脉状分布。矿物单体解离度比较差。该矿难选的原因主要是(1)含铁粘土矿物附着在磁铁矿和黄铁矿的表面,影响铜硫分离及硫浮选,导致铁精矿含硫超标。(2)铜矿物单体解离度差,因为嵌布粒度太细。(3)同时含有原生黄铜矿和次生的铜蓝和辉铜矿等,导致矿浆中铜离子较多,活化黄铁矿,造成铜硫难于分离。因此,该矿长期的生产和实验表明,浮选仅获得铜精矿铜品位10~12%,铁精矿品位低于60%,且含铜、硫严重超标,无法获得合格精矿产品。因此,要实现该矿的铜硫铁资源综合利用的关键,是解决矿浆中铜离子对黄铁矿的活化问题,在获得高品位铜精矿时,实现硫的回收。然后,再回收铁。基于这个原因,对矿浆p H值对黄铁矿、黄铜矿的可浮性影响进行了研究,结果表明pH对黄铜矿可浮性没有太大影响;但硫酸铜可以对黄铁矿起到显著活化作用。采用新型组合抑制剂(HT1)+(HT2)可对黄铁矿有效抑制,对黄铜矿不抑制,能够实现铜硫浮选分离。探索了先磁后浮和先浮后磁两种不同工艺方案,最终确定了先浮后磁工艺流程,以新型组合抑制剂HT1+HT2作为黄铁矿抑制剂,获得了铜精矿产率6.71%、品位17.41%、回收率76.87%;硫精矿产率15.54%、品位43.87%、回收率50.64%;铁精矿产率38.95%、品位63.55%、回收率62.35%。铜精矿中含Au3.5g/t、Ag120g/t的良好指标。红外光谱分析得知,新型抑制剂HT1和HT2是一种含钙药剂,其之所以能使黄铁矿得到抑制是因为其所含的钙离子与黄铁矿中的硫发生反应,生成亲水性沉淀覆盖在表面,从而阻止Cu2+活化,降低了黄铁矿的可浮性,进而使黄铁矿受到了抑制。
[Abstract]:Aiming at the comprehensive utilization of a refractory copper-ferric sulfur ore in Indonesia, the paper finds out the causes of the ore difficulty by mineral composition analysis, chalcopyrite, pyrite pure mineral test, and actual ore separation test, and infrared spectrum analysis, etc. The separation of copper and sulfur and the comprehensive utilization of iron resources have been completed. The mineral composition study shows that the copper grade of the ore is 1.53%, the iron grade is 39.70%, the sulfur grade is 13.46%, the silver content is 14.00 g / t, and the gold content is less than 0.5 g / t. Magnetite is the largest metal mineral, followed by pyrite, a small amount of hematite, chalcopyrite, copper blue. The rare ones are chalcopyrite, smithsonite, placerite, white lead ore and so on. The composition of nonmetallic minerals is complex, such as quartz, garnet, calcite, tremolite, talc, sericite, iron clay minerals, verdant, chlorite, etc. Magnetite is a dense granular mosaic and pyrite is a vein-like distribution. The dissociation degree of mineral monomer is poor. The main reason for this mineral difficulty is that the iron bearing clay mineral adheres to the surface of magnetite and pyrite, which affects the separation of copper and sulfur and the flotation of sulfur, which leads to the poor dissociation degree of iron concentrate from iron concentrate. Because the inlay granularity is too fine, there are both primary chalcopyrite and secondary copper blue and chalcopyrite, which lead to more copper ions in the pulp, activate pyrite, and make it difficult to separate copper and sulfur. Therefore, the long-term production and experiment of the ore show that the copper grade of copper concentrate is only 10 ~ 12% by flotation, the grade of iron concentrate is less than 60%, and the copper content and sulfur content are too high to obtain qualified concentrate products. Therefore, the key to realize the comprehensive utilization of copper, sulfur and iron resources in the ore is to solve the problem of the activation of pyrite by copper ions in the slurry, and to realize the recovery of sulfur when the high grade copper concentrate is obtained. Then, the iron is recycled. For this reason, the effect of pH value of pulp on the floatability of pyrite and chalcopyrite is studied. The results show that pH has no great effect on the floatability of chalcopyrite, but copper sulfate can activate pyrite significantly. The flotation separation of copper and sulfur can be realized by using a new type of combination depressant (HT1) HT2) to restrain pyrite effectively and not to inhibit chalcopyrite. In this paper, two different technological schemes of magnetic floatation and floatation were explored, and the technological process of floatation and magnetization was finally determined. A new combination inhibitor, HT1HT2, was used as pyrite inhibitor. The copper concentrate yield of 6.71%, grade 17.41, recovery rate 76.87; sulfur concentrate yield 15.54, grade 43.87 and recovery rate 50.64; iron concentrate yield 38.95%, grade 63.55; recovery rate 62.35; copper concentrate yield 6.71%, grade 17.41; sulfur concentrate yield 15.54; grade 43.87; recovery rate 50.64; iron concentrate yield 38.95; grade 63.55; recovery rate 62.35. The copper concentrate contains a good index of au 3.5g / t Ag 120g / t. Infrared spectrum analysis shows that HT1 and HT2 are calcium containing agents, which can inhibit pyrite because its calcium ions react with sulfur in pyrite and form hydrophilic precipitates to cover the surface. Thus, the activation of Cu _ 2 was prevented, the floatability of pyrite was reduced, and pyrite was restrained.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD952

【参考文献】

相关期刊论文 前10条

1 曹异生;;国际铜矿业进展[J];世界有色金属;2007年05期

2 王军民;Y-89在新桥矿选铜厂的应用实践[J];化工矿物与加工;2002年09期

3 罗惠华,罗廉明,王玉林;Y-98捕收剂选金、铜的试验研究[J];金属矿山;2001年03期

4 李成秀 ,文书明;多金属硫化矿浮选研究的新进展[J];国外金属矿选矿;2004年01期

5 欧阳素勤;银星宇;;硫铁矿选矿研究现状[J];矿产保护与利用;2011年Z1期

6 余新阳,周源;铜硫分离中无机抑制剂的研究[J];矿冶工程;2005年04期

7 李杰,钟宏,刘广义;硫化铜矿石浮选捕收剂的研究进展[J];铜业工程;2004年04期

8 杨苏琦;中国铜矿资源现状及产销形势分析[J];云南冶金;2002年06期

9 王立刚;刘万峰;孙志健;陈金中;李成必;;蒙古某铜钼矿选矿工艺技术研究[J];有色金属(选矿部分);2011年01期

10 穆晓辉,李娟,王德海,张学强;活化剂ZM-2的研究及应用[J];中国有色冶金;2004年04期



本文编号:2002634

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2002634.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3d86b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com