当前位置:主页 > 科技论文 > 矿业工程论文 >

低阶煤的生物多级絮凝研究

发布时间:2018-06-18 11:43

  本文选题:低阶煤 + 褐煤 ; 参考:《安徽理工大学》2017年硕士论文


【摘要】:选煤厂对煤炭的加工处理多以水为介质,产生了很多废水。为了对其进行回收再利用,实际生产中主要采用絮凝剂对它的进行处理。工业生产中应用较广的絮凝剂主要是机高分子絮凝剂、无机絮凝剂这两类。但这两类作为化学药剂,存在较高的环境和安全隐患。微生物絮凝剂作为一种绿色环保的新型絮凝剂,高效、安全、无污染,是传统化学絮凝剂的良好替代品,因而得到了广泛的研究。本论文重点研究了微生物絮凝剂多级添加对低阶煤絮凝效果的影响。本论文的试验菌种包括真菌和细菌,其中细菌有枯草芽孢杆菌、球红假单孢菌,真菌为黄孢原毛平革菌。以煤泥水上清液透光率作为评定指标,通过对单菌种进行单因素试验,找到低阶煤煤泥水絮凝的最佳水平范围。以培养时间、煤泥水pH值、絮凝剂添加量、助凝剂添加量作为主要因素,设计正交试验,确定低阶煤煤泥水絮凝沉降的最优因素组合。进而设计生物多级絮凝试验和进行生物与非生物复配絮凝试验,寻找生物多级絮凝和复配絮凝低阶煤煤泥水的最优组合。试验结果表明,生物絮凝剂多级添加对低阶煤具有良好的絮凝效果。枯草芽孢杆菌(细菌)与球红假单孢菌(细菌)两级添加:1#(褐煤)枯草芽孢杆菌添加量2ml、球红假单孢菌添加量lml、助凝剂添加量1 ml、pH值为6时透光率为74.9%;2#(不粘煤)枯草芽孢杆菌添加量1.5ml、球红假单孢菌添加量lml、助凝剂添加量2ml、pH值为6时透光率为75.9%;3#(弱粘煤)枯草芽孢杆菌添加量2ml、球红假单孢菌添加量1.5ml、助凝剂添加量3ml、pH值为8时透光率为58.9%。絮凝效果明显好于单一添加枯草芽孢杆菌或球红假单孢菌。枯草芽孢杆菌(细菌)与黄孢原毛平革菌(真菌)两级添加:1#(褐煤)枯草芽孢杆菌添加量2ml、黄孢原毛平革菌添加量lml、助凝剂添加量3ml、pH值为5时透光率为74.3%;2#(不粘煤)枯草芽孢杆菌添加量2ml、黄孢原毛平革菌添加量Iml、助凝剂添加量2ml、pH值为8时透光率为76.8%;3#(弱粘煤)枯草芽孢杆菌添加量2ml、黄孢原毛平革菌添加量2ml、助凝剂添加量2ml、pH值为7时透光率为57.8%。絮凝效果明显好于单·添加枯草芽孢杆菌或黄孢原毛平革菌。枯草芽孢杆菌(细菌)、黄孢原毛平革菌(真菌)、球红假单孢菌(细菌)多级添加:1#(褐煤)枯草芽孢杆菌添加量2ml、黄孢原毛平革菌添加量1.5ml、球红假单孢菌添加量2ml、助凝剂添加量4ml、pH值为8时透光率为78.6%;2#(不粘煤)枯草芽孢杆菌添加量2ml、黄孢原毛平革菌添加量1ml、球红假单孢菌添加量0.5ml、助凝剂添加量3ml、pH值为7时透光率为74.8%;3#(弱粘煤)枯草芽孢杆菌添加量2ml、黄孢原毛平革菌添加量1.5ml、球红假单孢菌添加量2ml、助凝剂添加量3ml、pH值为7时透光率为69.8%。絮凝效果明显好于微生物絮凝剂单一添加,而且相比于微生物絮凝剂两级添加,微生物絮凝剂多级添加大大提升了 3#(弱粘煤)的絮凝沉降效果。球红假单孢菌(细菌)、黄孢原毛平革菌(真菌)与聚丙烯酰胺复配絮凝:1#(褐煤)球红假单孢菌添加量0.5ml、黄孢原毛平革菌添加量0.5ml、聚丙烯酰胺添加量0.2ml、助凝剂添加量4ml、pH值为8时透光率为81.8%;2#(不粘煤)球红假单孢菌添加量lml、黄孢原毛平革菌添加量0.5ml、聚丙烯酰胺添加量0.15ml、助凝剂添加量2ml、pH值为9时透光率为95.8%;3#(弱粘煤)球红假单孢菌添加量1.5ml、黄孢原毛平革菌添加量1.5ml、聚丙烯酰胺添加量0.2ml、助凝剂添加量4ml、pH值为9时透光率为94.9%。絮凝效果明显好于微生物絮凝剂单一添加或微生物絮凝剂多级絮凝。最后,对生物絮凝剂进行生化反应分析、红外光谱(FTIR)以及对干煤泥和絮凝前后煤泥絮体进行XRD、FTIR、SEM分析。在电性中和、卷扫、网捕等物理化学过程共同作用下,低阶煤形成絮团,微生物絮凝剂对煤泥水实现絮凝。经过生物絮凝剂絮凝处理后的低阶煤煤泥水,其絮体沉降速度很慢但絮体较结实不易破碎。经过生物絮凝剂与聚丙烯酰胺复配絮凝处理后的低阶煤煤泥水,其絮体易碎但沉降速度非常快。
[Abstract]:In order to recycle and reuse the coal, a lot of wastewater is produced in the processing of coal processing plant. In order to recycle and reuse it, the flocculant is mainly used to treat it in the actual production. The two kinds of flocculants used in industrial production are mainly polymer flocculants and inorganic flocculants, but these two kinds are used as chemical agents. As a new green flocculant, microbial flocculant is a new kind of flocculant with high efficiency, safety and no pollution. It is a good substitute for the traditional chemical flocculant. Therefore, it has been widely studied. This paper focuses on the effect of microbial flocculant multilevel addition on the flocculation effect of low order coal. The species included fungi and bacteria, among which bacteria were Bacillus subtilis, Pseudomonas aeruginosa, and fungi were Phanerochaete. The optimum level of low rank coal slurry flocculation was found by single factor test on single strain, and the time of culture, pH value of coal mud water and the amount of flocculant were added. As the main factor of coagulant addition, orthogonal experiment was designed to determine the optimal combination of flocculating settlement of low rank coal and coal slurry, and then the biological multistage flocculation test and biological and abiotic compound flocculation test were designed to find the optimal combination of biological multistage flocculation and compound flocculation of low rank coal and coal mud water. Multistage addition of coagulant has good flocculation effect on low order coal. Bacillus subtilis (bacteria) and Pseudomonas aeruginosa (bacteria) two levels: 1# (brown coal) Bacillus subtilis added 2ml, Pseudomonas aeruginosa added LML, coagulant added 1 ml, pH value of 6 when the light transmittance was 74.9%; 2# (non stick coal) Bacillus subtilis added 1.5ml, The addition of Rhodopseudomonas sp. was LML, the dosage of coagulant was 2ml, the transmittance was 75.9% when the value of pH was 6. The addition of Bacillus subtilis with 3# (weak coal) Bacillus subtilis was 2ml, the addition of Pseudomonas aeruginosa was 1.5ml, the addition of coagulant was 3ml, and the pH value was 8 at 58.9%. better than that of Bacillus subtilis or Pseudomonas aeruginosa with single addition of Bacillus subtilis or pseudobacillus subtilis. The addition of Bacillus subtilis (bacteria) and Phanerochaete Chrysosporium (fungi): 1# (brown coal) Bacillus subtilis added 2ml, Phanerochaete Chrysosporium added LML, coagulant addition of 3ml, pH value of 5 when the light transmittance was 74.3%; 2# (non sticky coal) Bacillus subtilis added 2ml, Phanerochaete Chrysosporium added Iml, coagulant addition 2ml, pH value 8 The transmittance was 76.8%, the addition of Bacillus subtilis 3# (weak coal) was 2ml, the addition of Phanerochaete Chrysosporium was 2ml, the dosage of coagulant was 2ml, and the transmittance of 57.8%. was better than that of Bacillus subtilis or Phanerochaete, Bacillus subtilis (Bacillus subtilis), Bacillus subtilis (bacteria), Bacillus subtilis (fungi), and ball red. The addition of spores (bacteria): 1# (brown coal) Bacillus subtilis added 2ml, Phanerochaete Chrysosporium added 1.5ml, Pseudomonas aeruginosa added 2ml, coagulant addition of 4ml, pH value of 8 when the transmittance was 78.6%; 2# (non sticky coal) Bacillus subtilis added 2ml, Phanerochaete Chrysosporium added 1ml, Pseudomonas aeruginosa added 0.5ml, The addition of coagulant was 3ml, the transmittance was 74.8% when the value of pH was 7; the addition of Bacillus subtilis with 3# (weak coal) was 2ml, the addition of Phanerochaete Chrysosporium was 1.5ml, the addition of Pseudomonas aeruginosa was 2ml, the addition of coagulant was 3ml, and the value of transmittance was 69.8%. when the value of pH was 7, and the flocculating effect was better than the microbial flocculant single addition, and compared with the microbial flocculation. Adding two stages of coagulant and multistage addition of microbial flocculant greatly enhanced the flocculation and settling effect of 3# (weak sticky coal). Rhodopseudomonas sp. (bacteria), Phanerochaete Chrysosporium (fungi) and polyacrylamide compound flocculation: 1# (brown coal), Pseudomonas aeruginosa added 0.5ml, addition of Phanerochaete Chrysosporium 0.5ml, and 0.2ml addition of polyacrylamide. The light transmittance was 81.8% when the dosage of the coagulant was 4ml and the value of pH was 8; the addition of Pseudomonas aeruginosa by 2# (non stick coal) was LML, the addition of Phanerochaete Chrysosporium was 0.5ml, the addition of polyacrylamide was 0.15ml, the dosage of the coagulant was 2ml, the transmittance was 95.8% when the value of pH was 9; the addition of 3# (weak sticky coal) of Pseudomonas aeruginosa was 1.5ml, and the addition of Phanerochaete Chrysosporium was 1.5ml. The addition of acrylamide was 0.2ml, the amount of coagulant was added to 4ml, when the pH value was 9, the effect of light transmittance to 94.9%. was better than that of microbial flocculant single addition or microbial flocculant multistage flocculation. Finally, biochemical reaction analysis of bioflocculant, infrared spectrum (FTIR) and XRD, FTIR, SEM to dry slime and flocculation before and after flocculation were carried out. Under the common effects of physical and chemical processes such as electric neutralization, sweeping and net capture, low order coal formed floc and microbial flocculant flocculated coal mud water. After flocculation of bioflocculant, the sedimentation rate of the floc was very slow but the floc was not easy to break. Through biological flocculant and polyacrylamide, the flocculant was mixed with polyacrylamide. After flocculation, the floc of the low rank coal slime water is fragile, but the settling velocity is very fast.
【学位授予单位】:安徽理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD94

【相似文献】

相关期刊论文 前10条

1 孟庆函,李善祥,李保庆;低阶煤氧化降解的研究及开发前景[J];腐植酸;1998年02期

2 张宗飞;;试论低阶煤的综合利用途径及其技术经济分析[J];化肥设计;2014年01期

3 孟庆函,李善祥,李保庆;低阶煤两段化学降解产物的组成性质[J];燃料化学学报;2000年04期

4 陶秀祥,尹苏东,周长春;低阶煤的微生物转化研究进展[J];煤炭科学技术;2005年09期

5 游伟;赵涛;章卫星;何正兆;皮金林;毕东煌;;美国低阶煤提质技术发展概述[J];化肥设计;2009年04期

6 虞育杰;刘建忠;王传成;胡亚轩;周俊虎;岑可法;;低阶煤脱水提质技术发展现状[J];热力发电;2011年09期

7 安茂燕;蒋荣立;;低阶煤浮选研究现状及分析[J];能源技术与管理;2012年01期

8 苏天雄;;浅谈我国低阶煤资源分布及其利用途径[J];广东化工;2012年06期

9 朱洋洋;卜良辉;孙宁陵;赵云鹏;;低阶煤溶剂萃取研究进展[J];广州化工;2013年18期

10 李振珠;李风海;薛兆民;房倚天;;低阶煤气化结渣特性的研究进展[J];菏泽学院学报;2013年05期

相关会议论文 前4条

1 曲思建;王琳;张樝;刘敏;刘立麟;;我国低阶煤转化主要技术进展及工程实践[A];中国煤炭学会成立五十周年高层学术论坛论文集[C];2012年

2 高同国;姜峰;杨金水;袁红莉;;低阶煤降解微生物菌群的分离及其降解效果研究[A];2010中国腐植酸行业低碳经济交流大会暨第九届全国绿色环保肥料(农药)新技术、新产品交流会论文集[C];2010年

3 管嵩;宋成;王仑;丁仕兵;;环境温湿度对进口低阶煤内水影响的研究[A];山东出入境检验检疫局专刊[C];2012年

4 彭少涛;刘川庆;朱卫平;孙斌;刘学鹏;;保德区块中低阶煤压裂存在的问题及技术对策[A];2011年煤层气学术研讨会论文集[C];2011年

相关重要报纸文章 前10条

1 通讯员白云峰、谢振江、谢光顺;奇台县与重庆兴祥港埠有限公司签订低阶煤循环利用项目合同[N];昌吉日报(汉);2011年

2 李北陵;低阶煤盼变“白天鹅”[N];中国工业报;2011年

3 记者 张婷;我区首个低阶煤开发项目开工[N];新疆日报(汉);2012年

4 记者高珍吉;低阶煤循环利用项目在奇台开工[N];昌吉日报(汉);2012年

5 韩红梅 石油和化学工业规划院无机化工处副处长;低阶煤热解提质需全力攻关[N];中国化工报;2013年

6 本报记者 闫志强;低阶煤分质转化需统筹规划[N];中国能源报;2013年

7 本报记者 闫志强;低阶煤分质转化标准要高[N];中国能源报;2013年

8 商报记者 高立萍;海外煤炭技术企业谋局中国市场[N];北京商报;2011年

9 高立萍;海外煤炭技术企业谋局中国市场[N];中国石化报;2011年

10 田华;低阶煤制备水煤浆技术获突破[N];中国国土资源报;2009年

相关博士学位论文 前10条

1 李子文;低阶煤的微观结构特征及其对瓦斯吸附解吸的控制机理研究[D];中国矿业大学;2015年

2 屈进州;低阶煤活性油泡浮选行为与浮选工艺研究[D];中国矿业大学;2015年

3 王影;低阶煤固定床和移动床脱水和低温热解过程中传热特性[D];太原理工大学;2016年

4 孙南翔;低阶煤热敏特性及其热力破碎机理研究[D];中国矿业大学(北京);2016年

5 刘丽华;热提质对低阶煤水分复吸与自燃特性影响研究[D];中国矿业大学(北京);2017年

6 赵卫东;低阶煤水热改性制浆的微观机理及燃烧特性研究[D];浙江大学;2009年

7 田忠坤;管式气流干燥器提质低阶煤理论与技术的研究[D];中国矿业大学(北京);2009年

8 邓春苗;低阶煤煤层气储集机理及原始含气量模拟研究[D];中国地质大学(北京);2015年

9 王娜;提质低阶煤热解特性及机理研究[D];中国矿业大学(北京);2010年

10 陈博;中低阶煤的分级变温热溶[D];中国矿业大学;2012年

相关硕士学位论文 前10条

1 王永;气体热载体低阶煤热解特性研究及连续热解系统研制[D];太原理工大学;2013年

2 孙香荣;新疆阜康矿区低阶煤孔隙结构与瓦斯解吸特性实验研究[D];西安科技大学;2015年

3 赵博骏;水热提质对低阶煤物理化学性质影响的实验研究[D];哈尔滨工业大学;2016年

4 胡志博;低阶煤极性基团的微波调控实验研究[D];哈尔滨工业大学;2016年

5 马利俊;冷冻处理低阶煤制水煤浆技术研究[D];宁夏大学;2016年

6 柳金秋;碱金属与碱土金属对低阶煤与生物质共热解的作用机制研究[D];中国矿业大学;2016年

7 郑云婷;低阶煤表面性质研究与浮选药剂的筛选[D];煤炭科学研究总院;2016年

8 王超;低阶煤低温热解提质特性实验研究[D];华北理工大学;2016年

9 王慧;低阶煤干燥提质防治煤尘灾害技术研究与应用[D];华北理工大学;2016年

10 张帅;预处理在低阶煤制备无灰煤中的应用[D];华北理工大学;2016年



本文编号:2035363

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2035363.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户853a2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com