基于“连续梁”模型的巷道顶板支护优化
本文选题:连续梁 + 矩形巷道 ; 参考:《中国矿业大学》2017年硕士论文
【摘要】:葫芦素矿随着开采的推进遇到了采掘接替紧张问题,巷道的掘进速度满足不了煤体的回采速度,原因在于顶板锚杆支护密度较大、时间较长。针对葫芦素矿采掘失调问题提出了支护优化方案。本文建立的“连续梁”模型是一个适用于求解中等稳定及以上巷道顶板条件下顶板位移模型,通过“连续梁”模型的建立,希望为巷道顶板变形提供了一个量化的计算方法,同时给出了顶板破坏位移判据。通过“连续梁”模型的构建,数值模拟及工业性实验得出优化方案的可行性,在研究过程中得到的结论如下:(1)矩形巷道围岩应力分布表达式。通过使用复变函数将矩形巷道转化为圆形巷道进行分析,通过圆形巷道围岩结论反推矩形巷道围岩应力分布。塑性区宽度确定。通过对巷道开挖后围岩分布与原有围岩分布进行分析,使用积分方法,带入具体的巷道实测数据并通过坐标转化得出塑性区宽度的表达式。(2)“连续梁”模型的建立、分析、求解及稳定性判断。通过将巷道顶板巷道简化,提炼出顶板梁模型,通过对两端固支梁的分析利用积分法得出模型挠度求解表达式,并提出梁的破坏形式主要来源于大挠度位置的拉破坏,在此基础上建立挠度破坏准则。针对葫芦素矿的具体地质条件建立相应的连续梁进行求解,并分析不同支护形式下梁的挠度差异及不同梁厚度情况下梁挠度关系。得出优化方案在位移上优于原有支护方案。针对巷道顶板应力分布及塑性区范围的求解提供两种思路,第一种理论推导法采用复变函数的方法。第二种数值模拟方法,建立相应矿山的数值模拟采用弹性求解方法模拟出距顶板不同位置的围岩应力表达式,同时得出塑性区方法,此方法不仅简化了计算,同时还提高了正确率。(3)采用数值模拟建立葫芦素矿两种支护方式的位移、应力和塑性区的对比。在巷道顶板不同位置布置相应的监测点进行监测,通过云图和监测数据对比分析巷道沉降在不同高度随巷道尺寸的一般规律,巷道沉降沿顶板方向的变化关系,围岩应力改变的相应规律。通过优化方案与原有支护方案的相应位置对比发现优化方案在位移、应力和塑性区上都要优于原有支护方案,从而证明了优化方案的可行性。(4)通过对葫芦素矿实验巷道在表面位移监测、压力监测和顶板离层窥视方面进行工业性试验,相比于原有支护方案优化方案效果更加显著,巷道整体维护情况良好。特别是优化方案的实施对离层进行了有效控制,得出大间排距方案是可行的。
[Abstract]:With the development of mining, Hulabu Mine has encountered the problem of mining replacement tension, and the tunneling speed of roadway can not meet the mining speed of coal body, the reason is that the roof bolting support density is high and the time is longer. Aiming at the problem of mining imbalance in Hulabu Mine, the support optimization scheme is put forward. The "continuous beam" model established in this paper is suitable for solving the roof displacement model under the condition of medium stability and above roadway roof. Through the establishment of "continuous beam" model, it is hoped to provide a quantitative calculation method for roadway roof deformation. At the same time, the criterion of roof failure displacement is given. Through the construction of continuous beam model, numerical simulation and industrial experiment, the feasibility of the optimization scheme is obtained. The conclusions in the study are as follows: (1) the stress distribution expression of surrounding rock in rectangular roadway. By using the complex variable function to transform the rectangular roadway into a circular roadway, the stress distribution of the surrounding rock in the rectangular roadway is deduced by the conclusion of the surrounding rock of the circular roadway. The width of plastic zone is determined. By analyzing the distribution of surrounding rock and original surrounding rock of roadway after excavation, using integral method, the actual measured data of roadway are brought into and the expression of plastic zone width is obtained through coordinate transformation. (2) the establishment and analysis of "continuous beam" model. Solving and judging stability. The roof beam model is abstracted by simplifying the roadway roof roadway, and the model deflection solution expression is obtained by using integral method through the analysis of the fixed beam at both ends. The failure form of the beam is mainly derived from the tensile failure in the large deflection position. On this basis, the deflection failure criterion is established. According to the specific geological conditions of Hulabu Mine, the corresponding continuous beam is established to solve the problem, and the deflection difference of beam under different support forms and the deflection relationship of beam with different beam thickness are analyzed. It is concluded that the optimized scheme is superior to the original support scheme in displacement. Two ideas are provided for solving the stress distribution of roadway roof and the range of plastic zone. The first method is based on complex variable function. The second kind of numerical simulation method is to establish the corresponding mine numerical simulation. The elastic solution method is used to simulate the stress expression of surrounding rock at different positions from the roof. At the same time, the plastic zone method is obtained, which not only simplifies the calculation, but also simplifies the calculation. At the same time, the accuracy is improved. (3) numerical simulation is used to establish the comparison of displacement, stress and plastic zone between the two support modes. Monitoring points are arranged in different positions of roadway roof. The general law of roadway settlement with different height with roadway size is analyzed by comparison of cloud map and monitoring data, and the relationship between roadway settlement and roof direction is analyzed. The corresponding law of stress change of surrounding rock. By comparing the corresponding position between the optimization scheme and the original support scheme, it is found that the optimized scheme is superior to the original support scheme in displacement, stress and plastic zone. Therefore, the feasibility of the optimization scheme is proved. (4) through the industrial tests on the surface displacement monitoring, pressure monitoring and roof separation peep-view of the experimental roadway in Hucurbitu Mine, the effect of the optimized scheme is more remarkable than that of the original support scheme. The overall maintenance of the roadway is in good condition. In particular, the implementation of the optimization scheme effectively controls the separation layer and concludes that the large spacing scheme is feasible.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD353
【参考文献】
相关期刊论文 前10条
1 何新宏;;大型循环流化床锅炉大比例掺烧煤泥研究[J];中国煤炭工业;2016年12期
2 冯帆;黄万朋;郭忠平;王亚军;王二雨;;浅埋下向单一进路巷道胶结充填顶板稳定性分析[J];采矿与安全工程学报;2016年06期
3 樊克恭;吕卫新;龙军波;;深井厚煤层沿空巷道变形特征及支护技术研究[J];煤炭技术;2016年09期
4 曹文贵;李鹏;唐旖旎;贺敏;;基于孔隙介质特征的地基沉降分层总和分析方法[J];中国公路学报;2016年03期
5 何富连;施伟;武精科;;预应力锚杆加长锚固应力分布规律分析[J];煤矿安全;2016年01期
6 何满潮;任晓龙;宫伟力;张晓虎;王春光;;矿山压力对煤矿瓦斯涌出影响实验分析及其控制[J];煤炭学报;2016年01期
7 潘一山;;煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J];煤炭学报;2016年01期
8 贺永年;韩立军;张后全;刘红岗;;岩石劈裂与岩石破坏性质的不稳定性[J];岩石力学与工程学报;2016年01期
9 马念杰;赵希栋;赵志强;李季;郭晓菲;;深部采动巷道顶板稳定性分析与控制[J];煤炭学报;2015年10期
10 樊克恭;王亚军;甄恩泽;冯帆;马池帅;;深部沿空掘巷肩角锚杆破断机理分析[J];辽宁工程技术大学学报(自然科学版);2015年10期
相关会议论文 前2条
1 李学华;侯朝炯;柏建彪;张农;;高应力巷道围岩应力转移技术与工程应用研究[A];全国煤矿千米深井开采技术[C];2013年
2 方祖烈;;拉压域特征及主次承载区的维护理论[A];世纪之交软岩工程技术现状与展望[C];1999年
相关硕士学位论文 前3条
1 陈斌;矩形巷道围岩应力弹性解与塑性区宽度研究[D];中国矿业大学;2015年
2 任庆峰;深部高应力软岩巷道非对称变形机理及控制对策研究[D];安徽理工大学;2012年
3 李瑞鸽;全预应力梁预应力损失的动力检测研究[D];华中科技大学;2005年
,本文编号:2058024
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2058024.html