滚轮罐耳刚度性能分析及试验研究
发布时间:2018-06-24 14:46
本文选题:滚轮罐耳 + 载荷分布 ; 参考:《安徽理工大学》2017年硕士论文
【摘要】:科学技术在不断发展,其应用领域也在不断的扩大,在煤矿行业上的应用体现在矿井的立井提升系统中。罐道、罐道梁、滚轮罐耳和提升容器作为立井提升系统的重要组成部分,其安全性能和使用寿命也在不断提高。立井提升的作用是人员安全的升降、煤炭的运输和机器设备的检修,当提升系统中任何一个设备在正常运行中发生故障,这将直接影响煤矿的生产和经济效益,重则可能造成人员伤亡。目前立井提升系统朝着安全、高效的方向发展,随着提升速度的提高和一次提升量增加,对滚轮罐耳的力学性能要求也越来越高。滚轮罐耳作为立井提升系统的导向装置,其力学性能对立井提升系统有重要影响,当其产生故障时会影响到罐道和罐笼的振动行为,也会诱发整个系统产生故障,尤其在高速运行下更为显著,最终将破坏矿井的安全运行。因此,为了满足立井提升系统安全、高效的需要,进行滚轮罐耳的刚度性能的研究十分必要。本文针对滚轮罐耳,分别采用结构性能分析、刚度性能分析、仿真模拟和实验测试四种方法,在不同负载下的刚度性能进行了分析研究。主要研究工作如下:(1)阐述了立井提升系统、滚轮罐耳的结构特点、不同滚轮罐耳的性能分析和滚轮罐耳的发展方向。(2)根据滚轮在外载作用下的变形情况,利用Hertz理论推导了滚轮与罐道之间力学性能。在外载的作用下,作用力通过支架传递到缓冲器上,根据碟形弹簧的特点得到缓冲器的变形情况。(3)基于ADAMS运动仿真,对滚轮罐耳模型进行仿真分析,探讨了滚轮罐耳在承受径向载荷时,滚轮和缓冲器的位移变化分析,滚轮罐耳的刚度随外载的变化规律。(4)搭建了滚轮罐耳静态刚度测试试验台,介绍实验台的组成部分,以及各组成部分结构设计。(5)进行了滚轮罐耳的径向静刚度测试,得到刚度特征曲线。同时测试结果和仿真结果进行了对比分析,在趋势上得到较好的一致性,通过多次实验对比,验证了测试方法良好的重复性。深入了解滚轮罐耳的刚度性能,获得了滚轮罐耳的刚度参数。
[Abstract]:The application field of science and technology is constantly expanding, and its application field is constantly expanding. The application of the coal mine industry is embodied in the shaft lifting system of the mine. The tank Road, the tank beam, the roller tank ear and the lifting vessel are the important parts of the vertical shaft lifting system. The safety performance and the service life of the coal mine are also increasing. The function of the vertical shaft lifting is the human being. The safety and lift of the personnel, the transportation of coal and the maintenance of the machinery and equipment, when any one of the equipment in the lifting system fails in normal operation, this will directly affect the production and economic benefits of the coal mine, and it will cause casualties. At present, the vertical shaft hoisting system is developing in a safe and efficient direction, with the improvement of the speed of lifting and the other. The mechanical performance of roller tank ear is becoming higher and higher. As the guide device of the vertical shaft lifting system, the mechanical performance of the roller can have an important influence on the vertical shaft lifting system. When it has a failure, it will affect the vibration of the tank and the cage, and it will also cause the whole system to fail, especially at high speed. In order to satisfy the safety of the shaft hoisting system and the high efficiency, it is necessary to study the stiffness performance of the drum tank ear. In this paper, four methods, structural performance analysis, stiffness performance analysis, simulation simulation and experiment test, are used for the drum tank ear. The main research work is as follows. The main research work is as follows: (1) it describes the vertical shaft lifting system, the structure characteristics of the roller jar ear, the performance analysis of different roller canister ears and the development direction of the roller tank ear. (2) the mechanical properties between the roller and the tank channel are deduced according to the deformation of the roller under the loading of the outer load. Under the action of the external load, the force is transferred to the buffer through the support, and the deformation of the buffer is obtained according to the characteristics of the disc spring. (3) based on the simulation of the ADAMS motion, the model of the roller tank ear is simulated and analyzed. The analysis of the displacement of the roller and the bumper and the stiffness of the roller can be discussed. The changing law of the external load. (4) a test bench for the test of the static stiffness of the roller can be built. The composition of the test bench and the structure design of the components are introduced. (5) the radial static stiffness test of the drum of the roller can be tested and the characteristic curve of the stiffness is obtained. The test results are compared with the real results, and the trend is better. Conformance, the repeatability of the test method was verified by many experiments, and the stiffness performance of the roller tank ear was thoroughly understood, and the stiffness parameters of the roller tank ear were obtained.
【学位授予单位】:安徽理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD534
【参考文献】
相关期刊论文 前10条
1 薛健健;李毅华;王静文;张新;;立井提升容器滚轮罐耳的应用与发展方向[J];内江科技;2016年08期
2 戚晓楠;秦强;朱家诚;;基于ANSYS的滚轮罐耳刚度分析[J];煤矿机械;2015年06期
3 郑彬;申伟鹏;任大森;;煤矿箕斗滚轮罐耳改进设计与应用[J];煤矿机械;2015年05期
4 谭廷帅;王海峰;;滚轮罐耳缓冲行程解析方法[J];煤矿机械;2013年01期
5 瞿超;朱真才;陈国安;彭玉兴;徐蕾;;滚轮罐耳胶轮动态热物性能及瞬态温度场研究[J];煤炭学报;2010年01期
6 杨建奎;李祝民;;滚动罐耳的受力分析及改进[J];矿山机械;2009年24期
7 王平;肖兴明;李帅波;徐波;;矿井提升系统振动与行程控制仿真研究[J];中国煤炭;2008年12期
8 吴纯志;康正坡;;新型滚轮罐耳在煤矿生产中的应用[J];煤矿现代化;2008年01期
9 张红芳;翟淑园;苏传云;;立井罐道差动联结装置在井筒装备中的应用[J];山东煤炭科技;2007年05期
10 马丽;刘伟;煤矿立井滚轮罐耳磨损寿命加速试验误差分析[J];中国煤炭;2007年03期
,本文编号:2061876
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2061876.html