多绳摩擦式提升机提升载荷动态监测方法研究
本文选题:油腔型传感器 + 压力波动 ; 参考:《中国矿业大学》2017年硕士论文
【摘要】:钢丝绳张力是煤矿安全提升主要检测参数之一,直接影响着矿山安全生产。然而煤矿提升机提升过程中钢丝绳存在振动和冲击,严重干扰着钢丝绳有效张力和提升载荷的监测,针对处于动态过程中钢丝绳张力监测的复杂性,本文进行了多绳摩擦式提升机提升载荷动态监测方法研究。本文设计一种油腔传感器安装于提升机平衡油缸的活塞杆与滑块之间,将钢丝绳张力信号转化为活塞杆与滑块之间的压力信号进行测量,解决了拉力传感器直接与钢丝绳串联测量张力的安全隐患,提高了提升载荷动态监测的安全性。本文设计的油腔传感器,基于封闭空间的消振理论,利用传感器内部的油腔结构,将被测信号转化为油腔内部的压力信号进行测量,降低了被测信号压力波动对测量结果的影响,解决了提升过程中钢丝绳瞬态张力波动对钢丝绳有效张力测量干扰的问题。本文采用集中参数等效法,建立了油腔传感器消振模型,确定了影响传感器消振性能的两阶临界频率,得到了低频噪声的控制方法;利用流场内压力波动方程,得到流场内的压力分布规律,确定了流场内高次波存在的截止频率,进一步阐释了油腔对于高频压力波的衰减规律;基于阻尼的耗能特性,在油腔内部设置了缝隙结构,增大系统阻尼,取得了控制油腔内压力幅值的效果,实现消除钢丝绳波动对钢丝绳有效张力测量影响的目的。本文利用小孔阻尼对传感器声学结构进行改进,控制了油腔压力波动幅值,避免了油腔共振对于应变区信号的影响。本文利用LMS Virtual.lab仿真软件对油腔传感器进行了耦合模态仿真和基于模态空间的液固耦合仿真,验证油腔传感器的消振模型的正确性,同时通过在仿真中改变仿真参数研究油腔结构参数与流体种类对于油腔传感器消振特性的影响,从而指导油腔传感器的结构设计。实验室对设计的新型传感器进行了线性度测试、标定与温升实验,保证了传感器测量精度;根据晶体热膨胀特性与物态方程得到了传感器在不同温度下压力变化规律,可以作为温度补偿的依据;提出了传感器在现场使用的标定方法,并且通过与油压传感器和通用压块传感器进行对比实验,验证了设计的新型传感器的滤波消振特性;最后研制了基于新型传感器的钢丝绳测试平台,通过在煤矿现场应用,表明新型传感器不仅可以有效监测钢丝绳张力,计算提升载荷,还可以利用测量数据对提升机进行现场故障诊断。
[Abstract]:The tension of wire rope is one of the main detection parameters of coal mine safety lifting, which directly affects mine safety production. However, the vibration and impact of wire rope in the lifting process of coal mine hoist seriously interfere with the monitoring of effective tension and lifting load of wire rope, aiming at the complexity of monitoring wire rope tension in dynamic process. The dynamic monitoring method of lifting load of multi-rope friction hoist is studied in this paper. In this paper, an oil chamber sensor is designed and installed between the piston rod and the slider of the balancing cylinder of the hoist. The tension signal of the wire rope is converted into the pressure signal between the piston rod and the slider for measurement. The hidden trouble of tension measurement by tension sensor in series with wire rope is solved, and the safety of dynamic monitoring of lifting load is improved. The oil cavity sensor designed in this paper is based on the theory of vibration suppression in closed space, and the measured signal is converted into the pressure signal inside the oil chamber to measure by using the structure of the oil cavity inside the sensor. The influence of the pressure fluctuation of the measured signal on the measurement results is reduced, and the interference of the transient tension fluctuation of the wire rope on the effective tension measurement of the wire rope during the lifting process is solved. In this paper, by using the lumped parameter equivalent method, the vibration suppression model of the oil cavity sensor is established, and the two-order critical frequency which affects the performance of the sensor is determined, and the control method of the low frequency noise is obtained, and the pressure fluctuation equation in the flow field is used. The pressure distribution law in the flow field is obtained, the cutoff frequency of the high order wave in the flow field is determined, the attenuation law of the oil cavity to the high frequency pressure wave is further explained, and the gap structure is arranged in the oil chamber based on the energy dissipation characteristic of damping. By increasing the damping of the system, the effect of controlling the pressure amplitude in the oil chamber is achieved, and the effect of wire rope fluctuation on the effective tension measurement of the wire rope is eliminated. In this paper, the acoustic structure of the sensor is improved by using small hole damping to control the amplitude of the pressure fluctuation of the oil cavity and to avoid the influence of the oil cavity resonance on the signal in the strain region. In this paper, the coupling modal simulation and liquid-solid coupling simulation of the oil cavity sensor are carried out by using the LMS Virtual.lab simulation software, which verifies the correctness of the damping model of the oil cavity sensor. At the same time, by changing the simulation parameters in the simulation, the influence of the oil cavity structure parameters and the type of fluid on the vibration suppression characteristics of the oil cavity sensor is studied, so as to guide the structural design of the oil cavity sensor. The linearity test, calibration and temperature rise experiments of the new sensor are carried out in the laboratory to ensure the measuring accuracy of the sensor, and according to the properties of the thermal expansion of crystal and the equation of state, the law of the pressure variation of the sensor at different temperature is obtained. It can be used as the basis of temperature compensation, the calibration method of the sensor used in the field is put forward, and the filtering and damping characteristics of the new sensor are verified by comparing with the oil pressure sensor and the general pressure block sensor. Finally, the steel wire rope test platform based on the new sensor is developed. The application in the coal mine field shows that the new type sensor can not only effectively monitor the tension of the wire rope, but also calculate the lifting load. Also can use the measurement data to carry on the spot fault diagnosis to the hoist.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD534.3
【参考文献】
相关期刊论文 前10条
1 侯亮;杨维平;蔡惠坤;李胜玉;史英良;;基于声腔与结构模态分析的动力舱共振规避[J];中国工程机械学报;2015年05期
2 吴娟;寇子明;梁敏;吴国雄;;多绳摩擦提升系统钢丝绳横向振动分析与试验[J];华中科技大学学报(自然科学版);2015年06期
3 卢华喜;周珍伟;王漪璇;;液固耦合作用对不同截面深水桥墩的自振特性影响研究[J];华东交通大学学报;2015年02期
4 董宇;杨翊仁;鲁丽;;刚性边界对矩形板在静水中的频率影响[J];应用数学和力学;2014年S1期
5 王有斌;寇子明;吴娟;;落地式多绳摩擦提升系统动态特性研究[J];矿山机械;2014年09期
6 时统军;王朋;王博;;矿井提升机钢丝绳张力监测系统设计[J];工矿自动化;2014年06期
7 张新;严亚子;张超;;矿井提升钢丝绳张力在线监测系统设计[J];煤矿机械;2013年11期
8 王园;张建润;顾伟;黎文琼;;不同参数下封闭矩形声腔的结构-声耦合特性分析[J];东南大学学报(自然科学版);2013年03期
9 罗哉;陆艺;郭斌;范伟军;;圆柱轴类零件径向与轴向热变形异常现象研究[J];中国机械工程;2012年12期
10 沈苏;Goran Pavi;刘碧龙;李晓东;田静;;微穿孔板结构在管道声源特性测量中的应用分析[J];声学学报;2011年03期
相关硕士学位论文 前7条
1 何舸;薄膜声固耦合特征有限元分析及实验研究[D];哈尔滨工业大学;2015年
2 严亚子;多绳摩擦提升钢丝绳动张力在线监测系统研究[D];安徽理工大学;2014年
3 刘华伟;基于虚拟样机技术的矿井提升系统研究[D];太原科技大学;2012年
4 李飞仙;矿井提升钢丝绳监测装置研制及模拟分析[D];安徽理工大学;2010年
5 尹帮辉;封闭空间的声固耦合特性分析[D];沈阳航空工业学院;2010年
6 弃全英;多绳摩擦式矿井提升机动力卸载箕斗卸空检测与控制系统研究开发[D];太原理工大学;2007年
7 邵海燕;多绳提升机载荷动态监测与提升安全研究[D];山东科技大学;2003年
,本文编号:2070614
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2070614.html