砂岩铀矿巷道及采场稳定性控制方案数值模拟研究
发布时间:2018-07-09 22:28
本文选题:砂岩铀矿 + 巷道和采场稳定性 ; 参考:《南华大学》2015年硕士论文
【摘要】:目前,我国已探明及潜在的砂岩型铀资源量较大,但是,开发技术有限。为了实现我国对砂岩型铀矿床开发利用,应开展基础理论和应用技术研究。某砂岩型铀矿床工业铀矿化类型为层间氧化带型,由于矿石硬度、胶结程度和埋深大等特点,使该类砂岩铀矿床不适合用地浸开采技术进行开发。通过本课题的研究为地下常规开采已探明的该类砂岩型铀矿资源提供技术支撑,提高开采技术水平。在课题研究中,开采方法研究主要结合矿床赋存特点,对岩心样品进行矿岩的机械物理力学参数测试,在取得参数后进行砂岩、泥岩的巷道开挖变形数值模拟试验及采场顶板变形数值模拟试验。巷道变形数值模拟试验表明,巷道围岩的最大位移位于巷道的顶部,最大竖向应力位于巷道的拱肩和直墙两底角处,最大主应力位于巷道的拱肩和直墙两底角处,最小主应力位于巷道直墙两底角处,其值分别为1.3979cm、46.973MPa、49.612MPa和9.7887MPa;巷道顶部围岩发生了剪切破坏。为保证巷道掘进及使用安全性,进行了衬砌支护和锚杆支护的数值模拟试验。模拟结果表明:采用衬砌支护时,巷道围岩的竖向位移、竖向应力、最大及最小主应力均比未支护时相应减少,且随衬砌厚度的增加而不断减少。而衬砌结构产生的竖向位移较小,其承受的竖向应力远低于其抗压强度,且不会发生剪切破坏。采场顶板稳定性数值模拟试验进行预留矿柱(矿柱间距6m×6m、7m×7m、8m×8m三种方案)和矿柱间锚杆加强支护的试验。通过以上研究,得出以下结论,1)巷道开挖中必须进行支护。2)采用衬砌结构能有效的维护巷道的稳定性。考虑巷道的服务年限,选用衬砌厚度为10cm的支护结构能满足巷道稳定性的要求。3)采用上述锚杆支护的方式,锚杆的强度均有富余,均不会发生拉伸破坏,能有效的维护巷道的稳定性。考虑巷道的服务年限,选用直径为22mm、长度为1.5m、排距为2.0m的锚杆支护结构能满足巷道稳定性的要求。4)为了提高出矿率,减少矿产资源损失,建议采用矿柱间距8m×8m,矿柱间顶板上设置缝管锚杆支护方式进行回采,锚杆的长度为1.5m,以2m×2m的网度进行布设,基本保持完好,不会发生大规模破坏。上述研究成果和与有色冶金类似矿山类比,推荐以全面采矿法为主,条式进路法为辅的采矿方法适应本矿床开采,研究的采矿方法是安全可靠的。
[Abstract]:At present, the discovered and potential sandstone-type uranium resources in China are large, but the development technology is limited. In order to realize the development and utilization of sandstone-type uranium deposits in China, the basic theory and applied technology should be studied. The type of industrial uranium mineralization in a sandstone-type uranium deposit is interlayer oxidation zone type. Due to the characteristics of ore hardness, cementation degree and depth of burial, this type of sandstone-type uranium deposit is not suitable for exploitation by land leaching mining technology. The research in this paper provides technical support for the proven sandstone-type uranium resources in conventional underground mining, and improves the mining technology level. In the research of the subject, the mining method research mainly combines the deposit occurrence characteristic, carries on the mechanical physical mechanics parameter test to the core sample, after obtains the parameter carries on the sandstone, Numerical simulation test of excavation deformation of mudstone and roof deformation of stope. Numerical simulation of roadway deformation shows that the maximum displacement of surrounding rock is located at the top of the roadway, the maximum vertical stress is located at the bottom corner of the arch shoulder and the vertical wall of the roadway, and the maximum principal stress is located at the bottom corner of the arch shoulder and the vertical wall of the roadway. The minimum principal stress is located at the two bottom corners of the straight wall of the roadway, the values of which are 1.3979 cm / m ~ (-1) 46.973 MPA and 9.788 7 MPA respectively, and the shear failure occurs in the surrounding rock at the top of the roadway. In order to ensure the safety of roadway excavation and use, numerical simulation tests of lining support and bolting support were carried out. The simulation results show that the vertical displacement, vertical stress, maximum and minimum principal stress of surrounding rock of roadway are reduced compared with those without lining support, and decrease with the increase of lining thickness. However, the vertical displacement of lining structure is smaller, the vertical stress is much lower than its compressive strength, and shear failure will not occur. Numerical simulation test on roof stability of stope is carried out in which there are three schemes of reserved pillar (6 m 脳 6 m ~ 7 m 脳 7 m 脳 8 m) and bolting reinforcement between pillars. Based on the above study, the following conclusions are drawn: 1) the roadway stability can be effectively maintained by adopting the lining structure, which must be supported in the excavation of the roadway. Considering the service life of roadway, the support structure with lining thickness of 10cm can meet the requirement of roadway stability. Can effectively maintain the stability of the roadway. Considering the service life of roadway, the bolting structure with diameter of 22mm, length of 1.5m and row distance of 2.0m can meet the requirement of roadway stability. It is suggested to adopt the pillar spacing of 8m 脳 8m, the roof of the pillar is supported by jointed pipe bolting, the length of the bolt is 1.5m, and the bolt is arranged with a mesh of 2m 脳 2m, which is basically in good condition and will not be destroyed on a large scale. The above research results and the analogy with similar mines of non-ferrous metallurgy recommend that the mining method which is based on comprehensive mining method and supplemented by strip approach method is suitable for the mining of this deposit, and the mining method studied is safe and reliable.
【学位授予单位】:南华大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD353
【参考文献】
相关期刊论文 前10条
1 曲懋轩;侯克鹏;杨志全;;倾斜岩层弱结构围岩巷道破坏机理与支护技术研究[J];矿产与地质;2014年06期
2 杨仁树;薛华俊;何天宇;李涛涛;王茂源;梁明;;回采动压影响下深井巷道变形破坏规律数值模拟研究[J];煤炭工程;2014年10期
3 张文明;张茂林;;巷道围岩稳定影响因素数值模拟分析[J];能源与节能;2014年07期
4 田胜科;陈保林;;全面采矿法在白牛厂银多金属矿的应用[J];云南冶金;2013年04期
5 杨官涛;袁梅芳;;缓倾斜薄矿脉机械化开采新技术及工程实践[J];矿业研究与开发;2013年03期
6 薛华俊;宋建成;李中州;李建平;陈灿亭;程政;;深井岩巷掘进中的围岩应力场的数值分析[J];中国矿业;2013年05期
7 杨佳春;马仲涛;;锚杆支护下巷道围岩稳定性的数值分析[J];工程地质计算机应用;2012年04期
8 张涛;刘剑友;陈道志;;厚表土层薄基岩条件下回采巷道支护研究[J];煤炭工程;2012年10期
9 周科峰;李宇峙;柳群义;;层状岩体强度结构面特征的数值分析[J];中南大学学报(自然科学版);2012年04期
10 郝亚飞;李海波;郭学彬;张继春;夏祥;莫振泽;;含软弱夹层岩体边坡爆破层裂特性及稳定性研究[J];岩土力学;2012年04期
,本文编号:2110910
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2110910.html