高钙水体对磁铁矿浮选脱硫的影响机理与控制方法
[Abstract]:Sulfur in iron ore has a serious impact on the performance of its smelting products, so sulfur content is an important measure of iron concentrate quality, desulfurization is also a necessary process in the process of iron ore separation. The sulfur in iron ore is mainly pyrite, pyrrhotite and other metal sulfides, most of which are usually removed during magnetic separation, but highly magnetic pyrrhotite is easy to enter magnetic concentrate. Further flotation removal is often needed. The sulfur content of a high sulfur magnetite concentrate in Danfeng Shaanxi is 1.16 and the sulfur bearing mineral is pyrrhotite basically. It is still difficult to obtain ideal indexes by multiple separations in the process of flotation desulphurization. By analyzing the field influencing factors, it is found that there is a large amount of Ca ~ (2) in the water body and the dissolution of the calcium bearing minerals, which results in the high content of Ca ~ (2) in the slurry. It is suggested that Ca2 may affect the flotation performance of pyrrhotite and further affect the desulfurization effect of magnetite concentrate. This paper focuses on the problem of flotation desulfurization of magnetite in high calcium water. By means of solution chemical analysis and contact angle measurement, such as XPSG SEM-EDS and ICP-MS, the effect mechanism of Ca ~ (2) on the flotation characteristics of pyrrhotite is clarified. The suitable method to enhance the flotation desulfurization effect of magnetite in high calcium water was studied. The effect of Ca ~ (2) on the flotation behavior of pyrrhotite was investigated through the flotation test of pure minerals. It was found that the floatability of pyrrhotite in high calcium water was significantly reduced. Comparing the activation effect of copper sulfate with different Ca2 content, it is found that Cu2 has a serious effect on the activation of pyrrhotite. It is found that the activation effect of Cu2 on pyrrhotite is increased with the increase of Ca2 concentration. The adsorption of copper ions on the mineral surface was significantly reduced. SEM images showed that a large number of small white particles appeared on the surface of pyrrhotite in high calcium water. The results of EDS and XPS showed that the calcium content on the mineral surface increased significantly, while the contents of oxygen and sulfur also increased. It is concluded that Ca2 formed a layer of calcium sulfate hydrophilic film on the surface of pyrrhotite, and this layer formed a surface occupied position, which prevented the activation of pyrrhotite by Cu2. The influence of Ca ~ (2) was eliminated by complexing Ca ~ (2). The complexing agents such as ammonium nitrate, ammonium citrate and citric acid were tested respectively. It was found that citric acid complexed Ca ~ (2) was activated with copper sulfate, and the floatability of pyrrhotite was improved significantly. When the dosage of citric acid is 1 脳 10 ~ (-3) mol / L, the ratio of citric acid to copper sulfate is 1: 2, pH is 4-5, and the amount of Ding Ji xanthate is 1.2 脳 10 ~ (-4) mol / L, the recovery rate of pyrrhotite reaches 92.90%. The results show that Ca2 in citric acid complex slurry hinders the formation of CaSO4 hydrophilic film, and that Fe (OH) 3 produced by oxidation on pyrrhotite surface can be cleaned, thus effectively improving the activation effect of Cu2 on pyrrhotite. In the actual mineral test, when the amount of citric acid is 600g / t, the amount of copper sulfate is 200g / t, and the amount of Ding Ji xanthate is 120g/t, the TFE content in the iron concentrate is 67.28%, and the sulfur content is reduced from 1.16% to 0.14%. The research provides a new way to solve the problems related to pyrrhotite flotation, such as desulphurization of high sulfur magnetite.
【学位授予单位】:西安建筑科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD923;TD951
【相似文献】
相关期刊论文 前10条
1 崔毅琦,童雄,周庆华,何剑;国内外磁黄铁矿浮选的研究概况[J];金属矿山;2005年05期
2 刘晓荣;姜圣才;;磁黄铁矿和黄铁矿的生物浸出研究[J];矿冶工程;2006年06期
3 李文娟;宋永胜;;磁黄铁矿的浮选电化学及抑制剂研究概况[J];矿冶;2008年01期
4 赵开乐;顾帼华;李双棵;;有菌和无菌体系下磁黄铁矿氧化的电化学研究[J];中南大学学报(自然科学版);2011年10期
5 C.S.Stevens;高守仁;;德尔尼特矿山含金磁黄铁矿的处理[J];国外金属矿选矿;1966年03期
6 候清瑜;磁黄铁矿土法炼磺的几点经验[J];化工矿山技术;1977年06期
7 侯清瑜;磁黄铁矿的保护和使用[J];化工矿山技术;1982年01期
8 郭昌槐,胡熙庚;金川磁黄铁矿浮选特性的研究[J];矿冶工程;1983年01期
9 李达明,傅金宝,周卫宁;广西大厂锡矿田磁黄铁矿的标型特征及其地质意义[J];矿产与地质;1987年01期
10 傅贤书,李东亮,黄琼玉,张银菊,傅文敏;天然磁黄铁矿在重金属废水处理中的应用[J];环境化学;1991年05期
相关会议论文 前7条
1 何玉婷;汪灵;范博文;郑红霞;;基于黄铁矿加热变化过程的新生磁黄铁矿特征及其生成途径初探[A];2012年全国矿物科学与工程学术研讨会论文集[C];2012年
2 马宾;康明亮;刘春立;;磁黄铁矿还原亚硒酸的动力学及产物研究[A];第十一届全国核化学与放射化学学术讨论会论文摘要集[C];2012年
3 黄民智;唐绍华;黄许陈;张慎昭;;铜陵地区几个铜矿床中磁黄铁矿的成因和演化[A];中国地质科学院文集(5)[C];1983年
4 李洪枚;柯家骏;;细菌浸出金川含镍磁黄铁矿混合精矿的研究[A];西部矿产资源开发利用与保护学术会议论文集[C];2002年
5 王炬;;某进口高硫磁铁矿脱硫试验研究[A];2005年全国选矿高效节能技术及设备学术研讨与成果推广交流会论文集[C];2005年
6 宋亦军;徐苓;;补充高钙奶粉对青年女性的影响[A];中华医学会第四次全国骨质疏松和骨矿盐疾病学术会议论文汇编[C];2006年
7 徐姝迪;丁红;王忠;武璇;;高钙饲料喂养初断乳大鼠对肥胖诱导形成的影响[A];中国西部第六届营养与健康学术会议论文集[C];2011年
相关重要报纸文章 前6条
1 李响;老年人补钙不必选“高钙奶”[N];中国中医药报;2007年
2 常宾;买牛奶不必选“高钙”[N];健康时报;2007年
3 刘健;不要给孩子喝高钙奶[N];卫生与生活报;2006年
4 唐夏;不必专选高钙奶[N];中国消费者报;2007年
5 湘雅医院 李惠明;高钙食物可防卵巢癌[N];大众卫生报;2009年
6 诸新月;高钙奶更能补钙吗[N];医药养生保健报;2008年
相关博士学位论文 前4条
1 马英强;基于晶体化学的硫化铁矿浮选特性研究[D];东北大学;2013年
2 郑晓冬;富硫磁黄铁矿的储锂电化学行为及改性处理研究[D];青岛科技大学;2017年
3 黄红军;低活性难选硫铁矿高效活化应用基础研究[D];中南大学;2011年
4 蒋磊;氧化亚铁硫杆菌对黄铁矿、黄铜矿、磁黄铁矿和方铅矿的生物氧化作用研究[D];中国科学院研究生院(广州地球化学研究所);2006年
相关硕士学位论文 前10条
1 高珂;高钙水体对磁铁矿浮选脱硫的影响机理与控制方法[D];西安建筑科技大学;2017年
2 洪秋阳;磁黄铁矿晶体化学和可浮性研究[D];中南大学;2011年
3 高文元;攀枝花钒钛磁铁矿兰家火山矿段金属硫化物的成因矿物学研究[D];东北大学;2014年
4 宋艳玲;天然磁黄铁矿修饰微生物燃料电池阴极并应用于含铬(Ⅵ)废水处理的研究[D];内蒙古大学;2016年
5 钟洪皓;提高铜锌多金属硫化矿分选效果试验研究[D];辽宁工程技术大学;2015年
6 刘佳;Fe-S系列矿物结构特征及变化规律研究[D];东北大学;2014年
7 赵开乐;磁黄铁矿微生物浸出机理研究[D];中南大学;2010年
8 何玉婷;基于黄铁矿加热变化过程中新生磁黄铁矿特征及其生成途径[D];成都理工大学;2013年
9 李宁;磁黄铁矿对铼的还原固定及其影响因素研究[D];太原科技大学;2014年
10 朱晓;多级孔结构化磁黄铁矿材料制备及除磷性能[D];合肥工业大学;2015年
,本文编号:2130619
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2130619.html