当前位置:主页 > 科技论文 > 矿业工程论文 >

深埋脆性岩石的本构模型及开挖破坏区深度预测

发布时间:2018-07-18 12:16
【摘要】:随着基础工程建设、资源开发的逐步深部化和核废料处理的迫切性,深埋地下洞室的开挖破坏区成为国内外学者关注的热点问题。本文采用理论分析、数值模拟与现场监测对比验证的方法,围绕深埋硬脆性岩石隧道开挖过程中岩石呈现的破坏特征、开挖破坏区的形成机理、开挖破坏区数值模拟和深度预测方法等一系列问题展开研究。本文首先总结了脆性岩石在破坏过程中力学特性的演化规律,然后在理论和已有研究成果的基础上分析适合描述脆性岩体力学行为的本构模型,即弹-脆-塑性(EBP)模型,粘聚力-脆性-摩擦强度(CBF)模型和裂隙初始-劈裂界限(DISL)模型,为数值模拟提供了模型。借助于有限元软件Phase2对加拿大地下实验室Mine-by隧道进行开挖模拟。通过与Mine-by试验隧道开挖破坏区的监测资料进行比对,选择最有效的脆性模型。对比发现,选用EBP模型得到的破坏区范围角大于观测值,选用CBF模型计算得到的破坏区深度和范围角均小于监测数据,而通过DISL模型计算得到的深度和范围角均与观测值相当。该结果初步验证了DISL模型的优越性。在此基础上,考虑实际开挖面轮廓具有高度不规则性,因此以光滑圆形和连续小半圆形分别模拟设计和实际开挖面轮廓,获得不同的开挖破坏区范围和应力状态,可见简化开挖面几何形状具有不合理性。由于隧道左右边墙也产生破坏区,所以采用渐进开挖法模拟隧道的开挖过程,对比分析开挖模拟方法对破坏区形状的影响。结果表明,以实际断面轮廓为隧道的开挖边界,通过DISL模型和渐进开挖法能够很好地捕获开挖破坏区的几何形状和范围。采用经上述验证后的数值模拟方法对光滑圆形隧洞进行模拟计算,分析开挖面附近围岩的力学响应。研究发现:岩石从高度破坏区进入破坏区的标志是:最小主应力值开始增长,拉应变值达到最大,剪应变值急剧减小;破坏区内、外边界的分区指标是体积应变曲线发生反转;屈服单元的产生标志着从破坏区过渡到影响区;DISL模型能够很好地刻画围岩应力路径,准确描述脆性岩体的力学行为。对于一个给定的工程,上述分区方法为准确确定破坏区各区的尺寸提供了新思路。如果将这一成果进一步拓展研究,并应用于工程实践,将会对工程的长期稳定性预测产生重要的指导意义。
[Abstract]:With the construction of basic engineering, the gradual deepening of resource development and the urgency of nuclear waste disposal, the excavation and destruction area of deep buried underground cavern has become a hot issue that scholars at home and abroad pay attention to. In this paper, the method of theoretical analysis, numerical simulation and field monitoring is used to verify the failure characteristics of the rock and the formation mechanism of the damage zone during the excavation of the hard-brittle rock tunnel. A series of problems such as numerical simulation and depth prediction of excavation failure zone are studied. In this paper, the evolution law of mechanical properties of brittle rock in the process of failure is summarized, and then the constitutive model which is suitable for describing the mechanical behavior of brittle rock mass is analyzed on the basis of theory and existing research results, that is, the elastic-brittle plastic (EBP) model. The cohesion brittleness friction strength (CBF) model and the fracture initial-splitting limit (DISL) model provide a model for numerical simulation. The excavation of Mine-by tunnel in Canadian underground laboratory was simulated by the finite element software Phase2. The most effective brittle model is selected by comparing with the monitoring data of the excavation failure zone of the Mine-by test tunnel. It is found that the range angle of damage zone obtained by using EBP model is larger than the observed value, the depth and range angle of damage zone calculated by CBF model is smaller than that of monitoring data, and the depth and range angle calculated by DISL model are equal to the observed values. The results preliminarily verify the superiority of the DISL model. On this basis, considering the highly irregular profile of the actual excavated surface, the smooth circular and continuous small semicircle are used to simulate the design and actual excavated surface contour, respectively, and to obtain different excavation failure areas and stress states. It can be seen that the simplified geometric shape of the excavated surface is unreasonable. The excavation process of the tunnel is simulated by the progressive excavation method, and the influence of the excavation simulation method on the shape of the damage zone is analyzed comparatively because the damage zone is also caused by the left and right side walls of the tunnel. The results show that the geometric shape and range of the excavation failure zone can be captured well by using the DISL model and the progressive excavation method taking the actual section profile as the excavation boundary. The numerical simulation method verified above is used to simulate and calculate the smooth circular tunnel, and the mechanical response of surrounding rock near the excavating surface is analyzed. It is found that the sign of rock entering the failure zone from high failure zone is that the minimum principal stress value begins to increase, the tensile strain value reaches the maximum, and the shear strain value decreases sharply, and the zoning index of the outer boundary is the inversion of the volume strain curve in the failure zone. The generation of yield element indicates that the DISL model can well describe the stress path of surrounding rock and accurately describe the mechanical behavior of brittle rock mass. For a given project, the above zoning method provides a new idea for the accurate determination of the size of the damage zone. If this achievement is further developed and applied to engineering practice, it will be of great significance to predict the long-term stability of engineering.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD315

【相似文献】

相关期刊论文 前10条

1 高文学,刘运通,杨军;脆性岩石冲击损伤模型研究[J];岩石力学与工程学报;2000年02期

2 肖洪天,周维垣;脆性岩石变形与破坏的细观力学模型研究[J];岩石力学与工程学报;2001年02期

3 吕力行;压头静侵入脆性岩石引起等效压杆失稳侵入机理[J];湘潭矿业学院学报;2003年01期

4 谢海峰;饶秋华;谢强;黎纵宇;王志;;脆性岩石高温剪切(Ⅱ型)断裂的微观机理[J];中国有色金属学报;2008年08期

5 姚赞勋;张汉兴;;脆性岩石在单向压应力作用下的破环机理[J];武汉钢铁学院学报;1982年01期

6 李鹏;饶秋华;李卓;敬静;;脆性岩石热-水-力耦合应力强度因子计算(英文)[J];Transactions of Nonferrous Metals Society of China;2014年02期

7 朱珍德,徐卫亚,张爱军;脆性岩石损伤断裂机理分析与试验研究[J];岩石力学与工程学报;2003年09期

8 陈益峰;李典庆;荣冠;姜清辉;周创兵;;脆性岩石损伤与热传导特性的细观力学模型[J];岩石力学与工程学报;2011年10期

9 史维祥,金国栋;刀具作用下脆性岩石破碎的实验研究[J];有色金属;1986年01期

10 张东风;陈星明;肖正学;;脆性岩石中爆炸扩腔作用的数值模拟及分析[J];爆破;2014年01期

相关会议论文 前6条

1 黄书岭;丁秀丽;张传庆;;深部脆性岩石的力学行为与本构模型研究[A];中国软岩工程与深部灾害控制研究进展——第四届深部岩体力学与工程灾害控制学术研讨会暨中国矿业大学(北京)百年校庆学术会议论文集[C];2009年

2 鲁晓兵;矫宾田;王淑云;;饱和脆性岩石在反平面剪切条件下的应变局部化分析[A];第九届全国岩石动力学学术会议论文集[C];2005年

3 王士民;朱合华;冯夏庭;;脆性岩石破坏数值模拟研究的两个问题[A];第一届中国水利水电岩土力学与工程学术讨论会论文集(上册)[C];2006年

4 ;用800kN多功能三轴仪测量脆性岩石的扩容,蠕变及松弛(英文)[A];陈宗基论文选[C];1994年

5 许锡昌;刘泉声;;温度作用下脆性岩石的破坏类型及强度准则[A];新世纪岩石力学与工程的开拓和发展——中国岩石力学与工程学会第六次学术大会论文集[C];2000年

6 石泽全;于智海;伍向阳;金济山;;用8000KN多功能三轴仪测量脆性岩石的扩容、蠕变及松弛[A];陈宗基论文选[C];1994年

相关博士学位论文 前10条

1 李晓照;基于细观力学的脆性岩石渐进及蠕变失效特性研究[D];西安建筑科技大学;2016年

2 张利洁;高应力脆性岩石时滞性破坏特性研究[D];中国地质大学;2016年

3 许学良;脆性岩石抗拉特性及其破裂机制的试验与细观模拟研究[D];北京科技大学;2017年

4 柴金飞;基于矩张量理论的脆性岩石破裂机理研究[D];北京科技大学;2017年

5 黄书岭;高应力下脆性岩石的力学模型与工程应用研究[D];中国科学院研究生院(武汉岩土力学研究所);2008年

6 张勤;脆性岩石热—力—损伤耦合机理及数值模拟研究[D];武汉大学;2013年

7 江涛;基于细观力学的脆性岩石损伤—渗流耦合本构模型研究[D];河海大学;2006年

8 张凯;脆性岩石力学模型与流固耦合机理研究[D];中国科学院研究生院(武汉岩土力学研究所);2010年

9 彭俊;脆性岩石强度与变形特性研究[D];武汉大学;2015年

10 王小琼;脆性岩石损伤及物理性质演化的实验研究[D];中国地震局地球物理研究所;2012年

相关硕士学位论文 前4条

1 袁圣渤;硬脆性岩石直接拉伸力学试验与计算分析研究[D];山东大学;2016年

2 吴子科;脆性岩石裂纹尖端扩展状态的混沌动力学分析[D];山东科技大学;2007年

3 段海波;高应力下脆性岩石力学特性及细观演化机制研究[D];长江科学院;2013年

4 于莹;脆性岩石挤压断裂过程应力磁感强度实验研究[D];东北大学;2011年



本文编号:2131875

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2131875.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户53913***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com