采空区及煤柱下不同位置巷道稳定性控制研究
[Abstract]:In the process of close distance coal seam mining, when the upper coal mining is finished and the roof collapses behind, the coal pillars left in the upper coal mining process will produce stress concentration in the coal seam floor, and the stress distribution law of the floor will change. It directly affects the integrity of the lower coal seam roof. In the mining process of the lower coal, the surrounding rock pressure of the mining roadway is high and the roof stability is poor, which leads to the serious deformation and destruction of the roadway and the difficulty of supporting. Therefore, it is of theoretical and practical significance to study the stress distribution law of the coal in the middle and lower coal layers, the surrounding rock pressure, failure characteristics and stability control of the roadway in different positions of the lower coal seam. In this paper, based on the research background of Jialequan Coal Mine No. 8 #yun9# coal seam mining, combined with theoretical analysis, numerical simulation and engineering application, the distribution law of coal pressure in the near distance coal seam is studied. The deformation and failure characteristics of roadway in different positions of lower coal and the stability control of roadway surrounding rock are studied. The main conclusions are as follows: (1) the influence law of disturbance caused by mining of upper coal seam on rock layer under coal seam is analyzed by using slip line field theory. The method of calculating the maximum damage depth of upper coal mining to the lower strata is obtained. Combined with the actual geological conditions of Jialequan Coal Mine, the stress distribution law of different depths in the goaf is obtained by calculation. The results show that the vertical stress of the lower coal is the most affected by the mining disturbance of the overlying coal seam, the vertical stress of the lower strata within 5 m of the pillar and its two sides is greater than that of the original rock, and the maximum value is at the center of the coal pillar. The vertical stress of the lower strata beyond 5m on both sides of the coal pillar is smaller than that of the original rock. (2) with the reduction of the distance between the strata under the pillar and the upper coal pillar, the vertical stress of the strata increases obviously, reaching the maximum of 16 MPA, which is 2.56 times of the original rock stress. After excavation, the horizontal stress and shear stress of the surrounding rock change little, but the vertical stress increases obviously, and increases by 1.4 to 1.7 times, and the stress concentration in the surrounding rock of the roadway is obvious. The maximum vertical stress of roadway surrounding rock under goaf is 9 MPA, and the maximum vertical stress of surrounding rock under coal pillar is up to 25 MPA. (3) the roadway below the goaf in the lower coal is affected by the pressure relief of overlying goaf, and the pressure of surrounding rock at two sides and two shoulders of roadway is reduced. The shear failure range of surrounding rock is small and the overall stability of roadway is better. However, after the lower coal roadway is excavated under the coal pillar, the shear failure range of the surrounding rock of the roadway increases obviously, especially the shear fracture of the surrounding rock on the two shoulders of the roadway is developed, especially the shear fracture of the surrounding rock on the two shoulders of the roadway. (4) based on the analysis of the distribution of surrounding rock and the stability of roadway, the parameters of roadway support under coal pillar in Jialequan coal mine are optimized. The engineering application and monitoring results show that the deformation of the roof and floor and the two sides of the roadway are obviously reduced, the stress range of anchor cable is reasonable, and the shear failure area of roadway is reduced, which indicates that the optimized roadway scheme has achieved good support effect. It ensures the safety and stability of roadway during use.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD322.4;TD353
【相似文献】
相关期刊论文 前10条
1 张嘉勇;郭立稳;邱利;王福生;;模糊数学理论在煤矿巷道稳定性评价中的应用[J];矿业安全与环保;2007年04期
2 邱利;张嘉勇;;煤矿巷道稳定性评价[J];河北理工大学学报(自然科学版);2007年03期
3 周正濂;三也;;卸载要素类别对巷道稳定性的影响[J];世界采矿快报;1992年27期
4 付跃升,杨万斌;万年矿巷道稳定性调查与分析[J];东北煤炭技术;1999年01期
5 贺峰;;煤矿巷道稳定性评价指标体系设计研究[J];中小企业管理与科技(上旬刊);2010年04期
6 王同旭;软弱直接顶厚度对巷道稳定性影响[J];矿山压力与顶板管理;1997年Z1期
7 宋选民,柳崇伟;构造裂隙分布与巷道稳定性相关规律[J];矿山压力与顶板管理;2000年04期
8 宋选民,顾铁凤;构造裂隙对巷道稳定性影响的评价方法[J];太原理工大学学报;2001年06期
9 翟路锁;裂隙岩体巷道稳定性模拟研究试验[J];煤矿开采;2003年02期
10 李勉,王维德;断层影响带内巷道稳定性的改善[J];世界采矿快报;1994年07期
相关会议论文 前6条
1 吴兴春;王思敬;;巷道稳定性评价的集成计算机信息系统[A];面向21世纪的岩石力学与工程:中国岩石力学与工程学会第四次学术大会论文集[C];1996年
2 朱之杰;田永绥;张汝源;彭光忠;;对于巷道稳定性研究工作中地质工作的建议[A];地下工程经验交流会论文选集[C];1982年
3 宋晓天;王永光;;边界元法在矿山采场、巷道稳定性分析方面的应用[A];边界元法在岩石力学和工程中应用会议文集[C];1987年
4 朱珍德;王玉树;;巷道围岩流变对巷道稳定性的影响[A];岩土力学的理论与实践——第三届全国青年岩土力学与工程会议论文集[C];1998年
5 陈新明;盛天宝;;赵固二矿高水压裂隙岩体巷道稳定性研究[A];中国煤炭学会成立五十周年系列文集2012年全国矿山建设学术会议专刊(上)[C];2012年
6 刘刚;宋宏伟;;巷道稳定性影响因素分析[A];矿山建设工程新进展——2006全国矿山建设学术会议文集(上册)[C];2006年
相关博士学位论文 前2条
1 张春阳;铝土矿围岩性质时空效应与巷道稳定性研究[D];中南大学;2013年
2 葛勇;露井联采台阶爆破对地下巷道稳定性影响研究[D];北京科技大学;2015年
相关硕士学位论文 前10条
1 张颖;深部断续节理岩体中渗流对巷道稳定性影响的研究[D];贵州大学;2015年
2 张兵;深井近距离煤层群开采对下伏巷道稳定性影响研究[D];安徽理工大学;2016年
3 李林博;基于巷道稳定性和防突效果的底抽巷位置优化研究[D];河南理工大学;2014年
4 艾成才;基于加卸载响应比的单洞及小间距双洞巷道稳定性研究[D];湖南工业大学;2016年
5 邱利;煤矿巷道稳定性评价与安全评价软件开发[D];河北理工大学;2005年
6 胡龙飞;爆破震动对巷道稳定性影响研究[D];江西理工大学;2014年
7 张华磊;下保护层开采对上覆巷道稳定性的影响[D];安徽理工大学;2008年
8 甘仕伟;复杂地质条件下巷道稳定性分析与地压控制研究[D];武汉科技大学;2014年
9 原鸿鹄;采空区煤壁下矿压分布规律及巷道稳定性控制研究[D];太原理工大学;2015年
10 刘美平;断层附近地应力分布规律及巷道稳定性分析[D];山东科技大学;2009年
,本文编号:2149266
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2149266.html