黄土缓坡丘陵采煤塌陷预测中概率积分法适用性研究
[Abstract]:85% of China's coal resources come from well mining. Well mining will inevitably lead to surface subsidence and cracks, thus affecting mining production and people's lives. In addition, most of the coal mining areas in China are located in the ecologically fragile areas of Shanxi, Shaanxi and Mongolia. Especially on the basis of the study on the collapse morphological characteristics of the subsided land in the loess hilly area, the accurate prediction of the collapse degree of the subsided land can provide the basis for the prediction, treatment and restoration of the subsided land in the ecologically fragile coal mine area. At present, the probability integration method is widely used in the prediction of collapse, which is more suitable in the plain area, and the applicability of the method in the loess gentle slope hilly area needs to be studied. Therefore, this paper takes 903 face of Pingshuo coal mine as the research object, uses probability integration method as the method to predict the collapse of 903 face in Pingshuo coal mine, and makes a field investigation on the sample land of 100 脳 100m collapse area on the face. Based on the statistical analysis and spatial autocorrelation analysis of the collapsing land values (subsidence area, collapse depth, crack number, etc.), the morphological characteristics of subsidence land in Pingshuo mining area are studied. Finally, the prediction results of the probabilistic integration method are compared with the measured results, and the applicability of the method to the prediction of collapse in the loess hilly region is discussed. The main conclusions of this paper are as follows: (1) the collapse prediction of 903 face in Jinggong No.3 Mine is carried out by using probabilistic integration method and with the help of mining subsidence software (MSAS), developed by China University of Mining and Technology. The maximum subsidence area is located at the center of 903 face, which is 9269mm. The prediction results of subsidence in the sample plots show that the subsidence range is 1-9 m, and the DEM analysis results show that the subsidence degree of the sample plots is gradually increasing within 100m from east to west. The subsidence range is from 1 to 3.5 m. (2) the surface damage caused by mining in Pingshuo mining area is mainly manifested by surface subsidence and fracture. Through prediction calculation and remote sensing interpretation, the subsidence area of 903 face in Jinggong No. 3 Coal Mine is 220.02 mm ~ 2, of which the cultivated land is 200.18hm2and the woodland is 19.82hm2. The field survey results of the sample land (100 脳 100m) in the subsidence area show that the collapse area and the number of cracks are uniformly distributed in the sample area, but the spatial distribution of the collapse depth is not consistent. The research on the collapsing site space shows that the collapse in the central and southern part of the sample plot is more serious. However, the northwestern collapse is not serious, which may be related to the difference of mining technology and geological conditions. (3) by comparing the predicted subsidence value with the measured value, the root mean square error of the actual value calculated is 2.18 times of the standard deviation. According to the standard definition of root mean square error, the error between the predicted subsidence value and the measured subsidence value is large, which may be related to the geological characteristics of the hilly area and the range of sample plots.
【学位授予单位】:中国地质大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD327
【相似文献】
相关期刊论文 前10条
1 吴侃,靳建明,戴仔强;概率积分法预计下沉量的改进[J];辽宁工程技术大学学报;2003年01期
2 郭文兵,邓喀中,邹友峰;概率积分法预计参数选取的神经网络模型[J];中国矿业大学学报;2004年03期
3 查剑锋;郭广礼;赵海涛;贾新果;;概率积分法修正体系现状及发展展望[J];金属矿山;2008年01期
4 马洪浩;郭广礼;王磊;高盼;俞红;;测量误差对概率积分法求参精度的影响分析[J];现代矿业;2011年06期
5 王正帅;邓喀中;;概率积分法沉陷预计的边缘修正模型[J];西安科技大学学报;2012年04期
6 张正兴;赵爱军;李威;李小林;孙莹;彭亮;;基于空间分析的概率积分法在预测多煤层采空区塌陷中的应用——以青海塔妥煤矿为例[J];中国地质灾害与防治学报;2012年04期
7 陈俊杰;郭延涛;;基于灰色系统理论的概率积分法参数确定研究[J];测绘通报;2012年S1期
8 陈俊杰;陶宛东;郭延涛;;基于灰色预测模型的概率积分法参数确定研究[J];河南理工大学学报(自然科学版);2013年01期
9 卞和方;杨化超;张书毕;;概率积分法预计参数的智能优化选择方法研究[J];采矿与安全工程学报;2013年03期
10 王世道;林福钦;;对概率积分法的一些看法[J];矿山测量;1984年02期
相关会议论文 前2条
1 孙凤余;郑伟;郭新华;;概率积分法在矿山环境地表移动预测评估中的应用[A];河南地球科学通报2008年卷(下册)[C];2008年
2 陈俊杰;郭延涛;;基于灰色系统理论的概率积分法参数确定研究[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年
相关硕士学位论文 前10条
1 王拂晓;堤坝下采煤沉陷规律及治理技术研究[D];中国矿业大学;2015年
2 赵旺;煤矿采空区塌陷影响范围研究[D];南华大学;2015年
3 石磊;厚松散层条件下概率积分法求参方法研究[D];安徽理工大学;2016年
4 李广赛;地表动态移动与变形规律研究[D];安徽理工大学;2016年
5 刘炜;舒兰市东富村采空区地表沉降变形研究[D];吉林大学;2017年
6 孙冉;概率积分法参数求取和模型修正方法研究及程序实现[D];安徽理工大学;2017年
7 张诸林;两层采煤地面变形模拟研究[D];吉林大学;2012年
8 杨光锐;基于GIS与概率积分法的矿山开采沉陷预测研究[D];湖南科技大学;2014年
9 朱锟;基于概率积分法与VB语言的采空区地表移动变形预测系统研究[D];长安大学;2013年
10 吕惠农;地下采动影响下水工建筑物的危害预测分析[D];河海大学;2006年
,本文编号:2158297
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2158297.html