当前位置:主页 > 科技论文 > 矿业工程论文 >

基于旺采充填采煤法的覆岩导水裂隙发育规律

发布时间:2018-08-22 15:56
【摘要】:以王台铺煤矿XV2309充填采煤工作面为工程背景,提出旺格维利充填采煤法。采用数值模拟、物理模拟和实验室试验等手段,对旺采充填采煤条件下覆岩导水裂隙发育规律进行了浅尝性研究和分析,为旺格维利充填采煤方法下的保水开采提供研究基础。主要研究成果如下:(1)提出了旺采充填采煤等价采高模型,得出了影响导水裂隙发育高度的主控因素,并对覆岩导水裂隙发育高度进行了预计。进行了高水膨胀材料的单轴压缩试验,为数值模拟及物理模拟提供基本参考。(2)研究了旺格维利充填采煤法不同开采阶段覆岩移动及导水裂隙动态演化规律,定量得出了导水裂隙发育高度。相似模拟结果表明:旺采充填采煤可有效控制覆岩移动;采场巷道充填率为80%时,在充填采煤的第1阶段与第2阶段,覆岩导水裂隙基本不发育,顶板下沉量较小;在充填采煤的第3阶段与第4阶段,覆岩导水裂隙发育高度迅速增加,最大发育高度为19.8cm,最大下沉量为9mm。(3)建立了充填采煤模型和等价采高(长壁开采方法下的等价采高)模型,研究了不同等价采高与充填率时覆岩导水裂隙发育特征,并对比分析了等价采高模型与充填采煤模型的导水裂隙发育高度、覆岩位移量及应力变化规律。研究结果表明:在覆岩导水裂隙发育规律方面,旺采充填采煤法不同于长壁开采。充填采煤模型中不同充填率时覆岩导水裂隙发育高度均小于对应等价采高时裂隙发育高度。在充填采煤模型中,随着充填率的降低,覆岩导水裂隙发育高度逐渐增加。充填率为90%时(等价采高为0.25m),导水裂隙发育高度为4m,充填率为0时(等价采高为2.5m),导水裂隙最大发育高度为43m;在等价采高模型中,随着等价采高的增加,覆岩导水裂隙发育高度逐渐增加。等价采高为0.25m时,导水裂隙最大发育高度为8m,等价采高为2.5m时,导水裂隙发育高度为58m。
[Abstract]:Based on the XV2309 filling coal mining face of Wangtaipu Coal Mine, this paper puts forward the Wangeveri filling coal mining method. By means of numerical simulation, physical simulation and laboratory test, this paper makes a superficial study and analysis on the development of overburden water conductivity fissure under the condition of coal mining and filling, which provides a research basis for water conservation mining under the condition of Wanggeveli filling coal mining method. The main research results are as follows: (1) the equivalent mining height model for mining with fill and Wang mining is put forward, and the main controlling factors affecting the development height of water-conducting fractures are obtained, and the development height of water-conducting fissures in overburden rock is predicted. Uniaxial compression tests of high water expansion materials are carried out, which provide a basic reference for numerical and physical simulation. (2) the dynamic evolution of overburden rock movement and water conductivity fractures in different mining stages of Wangervili filling mining method are studied. The height of fracture development is obtained quantitatively. The similar simulation results show that the overburden movement can be effectively controlled by mining with filling and filling, and when the filling rate of roadway in stope is 80, in the first and second stages of filling coal mining, the overburden water conductivity fissure is basically not developed, and the roof subsidence is small. In the third and fourth stages of filling coal mining, the development height of overburden water conductivity fissures increases rapidly, the maximum development height is 19.8cm and the maximum subsidence is 9mmm. (3) the filling mining model and the equivalent mining height model (equivalent mining height under long wall mining method) are established. In this paper, the development characteristics of overburden water conductivity fissure with different equivalent mining height and filling rate are studied, and the development height, overburden displacement and stress variation of the equivalent mining height model and the filling coal mining model are compared and analyzed. The research results show that: in the development law of overburden water conductivity fissure, the mining method of Wang mining and filling is different from long wall mining. In the filling mining model, the development height of the overburden water conductivity fissure is lower than that of the equivalent mining height when the filling rate is different. In the filling coal mining model, with the decrease of filling rate, the development height of overburden water conductivity fissures increases gradually. The filling rate is 90 hours (equivalent mining height is 0.25 m), the development height of diversion fissure is 4 m, the filling rate is 0 (equivalent mining height is 2.5 m), the maximum development height of water conduction fissure is 43 m, in the equivalent mining height model, with the increase of equivalent mining height, The development height of overburden water conductivity fissures increases gradually. When the equivalent mining height is 0.25 m, the maximum development height of the water-conducting fissure is 8 m, and when the equivalent mining height is 2.5 m, the development height of the water-conducting fissure is 58 m.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD823.7

【参考文献】

相关期刊论文 前5条

1 赵才智;周华强;柏建彪;强辉;;膏体充填材料强度影响因素分析[J];辽宁工程技术大学学报;2006年06期

2 李永元;周华强;秦建云;刘坤;;矸石膏体充填采煤面矿压显现规律[J];能源技术与管理;2009年03期

3 许家林;朱卫兵;王晓振;;基于关键层位置的导水裂隙带高度预计方法[J];煤炭学报;2012年05期

4 张明;姜福兴;任艳芳;;深井大采高综放开采微震监测技术研究[J];煤炭科学技术;2012年12期

5 施龙青;辛恒奇;翟培合;李守春;刘同彬;闫勇;卫文学;;大采深条件下导水裂隙带高度计算研究[J];中国矿业大学学报;2012年01期



本文编号:2197589

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2197589.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c2936***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com