深部高应力巷道锚杆支护优化设计研究
[Abstract]:With the gradual depletion of shallow coal resources, a large number of mines will or will soon be transferred to deep mining, mining to the deep development of coal mining is an inevitable trend. It is difficult to control the surrounding rock of roadway because of the mechanical characteristics of roadway stability. At present, there is still insufficient scientific basis for bolt support parameter design of deep high stress roadway, and there is certain blindness, which results in unreasonable support strength and cost. Therefore, a large number of engineering experiments and theoretical research work should be carried out. Based on the project of National Natural Science Foundation of China "Study on the law of surrounding rock weakening in deep mine roadway and the control mechanism of surrounding rock with high-strength anchorage group", and in close connection with field engineering practice, a large number of field investigations and studies have been carried out on the characteristics of large deformation and failure of surrounding rock in deep high-stress roadway. The deformation speed is fast, the deformation has remarkable plasticity, the deformation duration is long, the two sides are extruded seriously, the supporting body is partly or completely invalidated and destroyed, and the large floor heave deformation and destruction are produced. Based on the mechanical calculation model and the formula for calculating the radius of plastic zone in the surrounding rock of deep roadway, the basis for choosing the length of bolt is provided. With the numerical analysis method and the orthogonal test method, the orthogonal numerical test of bolting support parameters is carried out in combination with the actual situation of the air roadway in No. There are 27 different calculation models in element 3 level, and the numerical simulation results are analyzed by multi-index range. The optimum supporting schemes are obtained as follows: 1. Roof supporting parameters: bolt length 2.6 m, bolt diameter 22 mm, bolt row distance 0.75 m *0.8 m, bolt preload 60 KN, bolt cable length 7.3 m, bolt cable diameter 17.8 mm, bolt cable diameter. The distance between cables is 2 *3 m and the pretension force of cables is 150 KN. The regression equation and the corresponding regression coefficient are used to approximate the quantitative prediction of the approximate displacement of the two sides of the roadway, the roof subsidence and the roof-floor displacement. The numerical simulation method is used to simulate and analyze the different concessions of the concessional pipe, and the optimum concessional point of the high-strength prestressed concessional anchor is 150 KN. The paper intends to analyze the deformation and failure characteristics, stress distribution law and displacement distribution law of surrounding rock after adopting the optimal supporting scheme in deep high stress roadway. During the course of roadway excavation, the peak value of vertical stress of surrounding rock does not change obviously and fluctuates about 28 MPa. Stress concentration occurs in front of the roadway, and the peak value of stress is about 28.7 MPa. The displacement of roof and floor increases gradually with the excavation. The displacement of roof and floor approaches 128 mm at 25 m and the displacement of surrounding rock increases about 80 mm. The optimal support scheme is applied to the wind tunnel of No. 10 Mine of Pingdingshan Coal Mine during the excavation period. Through monitoring and analysis, the roof subsidence, the roof and floor displacement and the two-side displacement of the surrounding rock changed sharply in the early stage, then gradually stabilized, and the final values were within the allowable range of change. The roof anchor, the upper-side anchor and the lower-side anchor force showed a slow growth trend, and finally reached a stable value respectively through the roof and the lower-side anchor. It can be seen from the stress monitoring diagram of the two sides of the bolt that the force of the roof bolt exceeds the initial load of the pressure concession pipe and the pressure concession pipe begins to yield. The bolt body is still in the stage of elastic deformation, which effectively prevents the bolt from breaking. The protection plan can completely guarantee the production requirements of the roadway during the service period.
【学位授予单位】:湖南科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD353.6
【相似文献】
相关期刊论文 前10条
1 戴雪晴;宫能平;;钢筋缠绕加捻新结构锚杆[J];煤矿机械;2007年12期
2 毛平淮;戴雪晴;;缠绕锚杆的试验与改进[J];矿山机械;2008年09期
3 郭增池;;回收锚杆的修复方法研究[J];煤炭技术;2009年12期
4 李世平;;锚杆应变的实测与分析[J];煤炭学报;1983年01期
5 刘长武,丁开旭;注浆浆液对锚杆抗腐性的影响[J];矿山压力与顶板管理;2000年03期
6 李相钦;水力膨胀式锚杆的应用[J];建井技术;2001年02期
7 万世文,王志清,苗田,张存库;两种可切割锚杆的使用评价[J];煤;2001年01期
8 孔恒,马念杰,王梦恕,张成平,杨振茂;新型金属粗尾高强度锚杆[J];煤;2001年06期
9 马念杰,张玉,陈刚,周仁德,卢正鑫,魏惠平,周希明,金书忱,孙卫国,郭贵宝;新型玻璃钢锚杆研究[J];煤矿开采;2001年04期
10 郭爱生;按装力矩对锚杆杆体强度的影响[J];山西煤炭管理干部学院学报;2001年04期
相关会议论文 前10条
1 范银平;靳熙;;右旋等强锚杆钢筋的生产实践[A];河南省金属学会2010年学术年会论文集[C];2010年
2 黄育;郭志昆;;锚杆腐蚀与防腐保护分析[A];第八次全国岩石力学与工程学术大会论文集[C];2004年
3 王明恕;郑雨天;何修仁;;全长锚固锚杆的力学模型及其设计计算[A];地下工程经验交流会论文选集[C];1982年
4 任非凡;徐超;谌文武;;南竹加筋复合锚杆承载特征现场试验[A];第十一届全国土力学及岩土工程学术会议论文集[C];2011年
5 刘保平;陈武;席月鹏;;扩大头(囊式)锚杆新技术[A];2013水利水电地基与基础工程技术——中国水利学会地基与基础工程专业委员会第12次全国学术会议论文集[C];2013年
6 翟金明;周丰峻;刘玉堂;;扩大头锚杆在软土地区锚固工程中的应用与发展[A];锚固与注浆新技术——第二届全国岩石锚固与注浆学术会议论文集[C];2002年
7 张诗光;;玻璃钢锚杆制造技术浅析[A];第十六届玻璃钢/复合材料学术年会论文集[C];2005年
8 刘成禹;赵喜斌;张继奎;;管式锚杆提高破碎围岩支护效果的理论与实践[A];中国软岩工程与深部灾害控制研究进展——第四届深部岩体力学与工程灾害控制学术研讨会暨中国矿业大学(北京)百年校庆学术会议论文集[C];2009年
9 陆庭侃;戴耀辉;;全长锚固锚杆在回采巷道层状顶板的工作特性[A];第十一次全国岩石力学与工程学术大会论文集[C];2010年
10 张继红;陈文娟;;复合锚杆及其足尺试验研究[A];第三届全国建筑结构技术交流会论文集[C];2011年
相关重要报纸文章 前1条
1 高颖敏翟金伦;锚杆回收有了专用钻杆[N];中国矿业报;2003年
相关博士学位论文 前10条
1 柯玉军;锚杆检测技术研究及应用[D];兰州大学;2006年
2 薛道成;煤矿巷道锚杆无损检测技术及在西山矿区的应用研究[D];中国矿业大学;2013年
3 任非凡;南竹加筋复合锚杆锚固机理研究[D];兰州大学;2009年
4 梁月英;土层扩孔压力型锚杆的锚固机理研究[D];中国铁道科学研究院;2012年
5 唐仁华;锚杆(索)挡土墙系统可靠性分析计算方法[D];湖南大学;2013年
6 张选利;柔性注压锚杆锚固特性研究[D];辽宁工程技术大学;2010年
7 曹佳文;充气锚杆力学特性试验研究与数值模拟分析[D];中南大学;2011年
8 孙冰;不同围岩中锚杆锚固系统的低应变动力响应分析[D];中南大学;2010年
9 李义;锚杆锚固质量无损检测与巷道围岩稳定性预测机理研究[D];太原理工大学;2009年
10 陈建功;锚杆—围岩结构系统低应变动力响应理论与应用研究[D];重庆大学;2006年
相关硕士学位论文 前10条
1 尹泉;充气锚杆的试验研究[D];中南大学;2011年
2 朱初初;基于能量分析的锚杆与锚索协同支护研究[D];中国矿业大学;2015年
3 王政;地下结构锚杆加固技术与静动力分析[D];河南科技大学;2015年
4 曹瑞;浅埋软弱围岩中隧道初支结构内各部件支护效能探讨[D];重庆交通大学;2015年
5 高战祥;隧道围岩玻璃纤维锚杆锚固性能研究[D];重庆交通大学;2015年
6 刁长友;基于弹性波属性锚杆锚固质量的研究[D];重庆交通大学;2015年
7 蒲会中;土质边坡密层锚杆挡土墙对破裂面的影响研究[D];重庆交通大学;2015年
8 陈鑫源;深部高应力巷道锚杆支护优化设计研究[D];湖南科技大学;2015年
9 姚海;锚杆—锚固剂—岩体界面力学特性实验研究及其有限元分析[D];太原科技大学;2008年
10 吴拥政;锚杆杆体的受力状态及支护作用研究[D];煤炭科学研究总院;2009年
,本文编号:2214285
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2214285.html