深海采矿扬矿泵参数设计及模拟研究
[Abstract]:The deep sea is rich in mineral resources, which is of great practical significance to alleviate the crisis of resource shortage in China. In the mining system of deep-sea mineral resources, the lifting pump is the key link. The lifting pump should not only provide the power of conveying fluid, I. e., lift, but also make the coarse grained ore with diameter up to 20-50mm pass through. Studies have shown that the semi-axial flow pump is a feasible pump type, which can meet the requirements of large flow rate and high head. Although the two-stage pump was successfully developed in China during the "11th Five-Year Plan" period, the problem of particle plugging in the pump has not been solved fundamentally. By analyzing the matching relationship between the relative parameters of the pump body and the particle parameters, it is of great theoretical and practical significance for the design and development of the lifting pump to reveal the mechanism of solid-liquid motion of coarse particles in the lifting pump. Based on the research results of the existing lifting pump, the hydraulic design of the impeller and guide vane of the hoisting pump is carried out, and the external and internal flow characteristics of the lifting pump are studied by the combination of numerical simulation and physical model. The influence of impeller blade placement angle on the performance of lifting pump is analyzed, and the movement characteristics of different particle sizes in the pump are studied by using discrete phase numerical model and physical model, and the influence of impeller blade inlet placement angle on particle motion characteristics is analyzed. The plugging characteristics of particles in lifting pump are studied by using physical model. The specific conclusions are as follows: (1) the optimal flow rate of the lifting pump is 28 m3 / h, the head is 4.8 m, the hydraulic efficiency is 66 m, which is consistent with the design conditions, and conforms to the initial design requirements, and the numerical simulation results of the pump inlet and outlet pressure difference under the static condition of the impeller are compared with the experimental values. The error is not more than 10, which shows the validity and reliability of the mathematical model. (2) after the impeller blade inlet angle is added with a 10 掳angle of attack, the optimal working point flow rate of the lifting pump is 25 m3 / h, the lift is 4.8 m, the hydraulic efficiency is 61%, and the head and efficiency of the pump as a whole decrease. The maximum efficiency point deviates to the direction of small flow rate. (3) the particle appears spiral ascending motion in the impeller region. With the increase of particle size, the probability of particle and impeller collision increases, and the collision point approaches to the impeller head; The particles flow out of the guide vane 2-4 times in the guide vane area, and the collision position is mainly distributed in the back entrance of the guide vane, the middle part of the guide vane face and the back outlet of the guide vane. With the increase of impeller blade inlet angle, the trajectory of particles in the impeller passage is shifted to the impeller face, and it is smoother. (4) with the increase of particle size, the inlet velocity of the particle decreases and the pump time increases, and the larger inlet angle of the guide vane leads to the increase of the number of collisions between the particles and the guide vane. The larger over pump time leads to the accumulation of particles in the pump and the blockage of the pump. (5) with the decrease of the flow rate of clear water, the particles become clogged at the inlet of the guide vane. The larger the particle size is, the higher the critical flow rate of clean water is when the pump is blocked.
【学位授予单位】:中央民族大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD53
【相似文献】
相关期刊论文 前10条
1 远藤薰 ,姚怀源;混流叶轮入口直径对泵吸入性能的影响[J];粮油加工与食品机械;1985年08期
2 余忠;;狭长流道叶轮铸造工艺[J];金山油化纤;1985年03期
3 黄志凌;冯勇建;;不同形状叶轮对潜油离心泵内数值流场的影响[J];石油矿场机械;2011年03期
4 曾忠刚;温秀荷;索杏兰;顾永超;江沙;龙珂;李陶;;叶轮切割技术在磁力离心泵中的应用[J];天然气与石油;2011年06期
5 郑传耀;高合金钢叶轮的熔模精密铸造[J];铸工;1981年04期
6 ;副叶轮负压轴封泥浆泵[J];有色金属(冶炼部分);1975年10期
7 刘振春;邹介斧;谢百之;;kYF—16浮选机[J];有色设备;1987年01期
8 曹利新;丛高伟;;三元叶轮数控加工刀位规划误差对其气动力性能影响[J];大连理工大学学报;2009年01期
9 任玉丽;;离心泵的工作原理及常见故障的排除[J];内蒙古石油化工;2008年10期
10 姜凤玖;油田用离心泵磨损机理和叶轮防磨损设计[J];石油机械;2003年08期
相关会议论文 前3条
1 何一兵;;离心泵匹配性及叶轮切割技术应用[A];2003年11省区市机械工程学会学术会议论文集[C];2003年
2 刘松;;应用有限元分析某叶轮配合形式对共振失效的影响[A];探索 创新 交流(第4集)——第四届中国航空学会青年科技论坛文集[C];2010年
3 陈杰;黄国平;梁德旺;刘玉石;;叶片数对跨音微型斜流叶轮性能的影响[A];大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C];2007年
相关重要报纸文章 前2条
1 ;纺织机械吸尘系统新型高效叶轮[N];中国纺织报;2014年
2 川电;为电站风机振动故障把脉会诊[N];中国电力报;2004年
相关硕士学位论文 前10条
1 蔡超;深海采矿扬矿泵参数设计及模拟研究[D];中央民族大学;2015年
2 佟连尧;除雾器清洗离心泵流场数值模拟及叶轮转子径向振动分析[D];华北电力大学;2015年
3 王定川;核电站混凝土蜗壳循环泵水力模型中叶轮工作曲面的优化设计[D];江苏大学;2009年
4 陈伟;轴流泵叶轮及泵站进水设计对叶轮室进口流态的影响[D];扬州大学;2011年
5 张江源;低比转速叶轮无脱流的Ζ、φ条件[D];西华大学;2009年
6 王秀勇;离心泵流动特征的数值分析[D];浙江大学;2007年
7 姚望;800GS80新型双蜗式离心泵性能分析及优化[D];山东大学;2014年
8 黄俊雄;离心泵流动噪声数值仿真方法研究[D];中国科学院研究生院(工程热物理研究所);2010年
9 赵鹏飞;闭式叶轮数控加工关键技术研究[D];哈尔滨工业大学;2013年
10 李翔;Q25H52电液循环泵的研制[D];武汉工程大学;2011年
,本文编号:2234442
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2234442.html