当前位置:主页 > 科技论文 > 矿业工程论文 >

走向高抽巷配合倾向钻孔抽采上邻近层卸压瓦斯技术

发布时间:2018-10-22 08:53
【摘要】:高瓦斯煤层群工作面开采时,由于采动的影响使得上邻近层含瓦斯煤层瓦斯解吸并涌入工作面,导致工作面瓦斯超限,所以上邻近层卸压瓦斯抽采越来越受到重视。阳泉五矿15#煤层8210工作面开采过程中,覆岩内采动卸压瓦斯涌出量占工作面瓦斯涌出量的90%,针对单独使用一条走向高抽巷抽采不能解决工作面瓦斯超限的问题,提出使用走向高抽巷配合倾向钻孔抽采覆岩上邻近层卸压瓦斯,即使用本工作面高抽巷抽采回风侧裂隙带瓦斯的同时,利用相邻备用工作面高抽巷布置倾向钻孔,终孔位于采煤工作面进风巷内侧顶板裂隙带内,抽采进风侧裂隙带内的卸压瓦斯,从而增加覆岩裂隙卸压瓦斯抽采范围。基于8210工作面覆岩岩层地质状况及含瓦斯煤岩层分布,结合理论研究、数值模拟等方法研究了工作面开采后覆岩岩层应力重新分布、覆岩裂隙分布、卸压瓦斯流动、卸压瓦斯抽采方法及抽采效果,为覆岩裂隙带卸压瓦斯抽采提供重要参考,具体研究内容如下:(1)研究工作面开采后,覆岩内采动裂隙分布,从而确定覆岩内卸压瓦斯富集区域,为走向高抽巷及倾向钻孔布置提供依据。首先使用FLAC3D模拟软件建立8210工作面开采模型,通过分析工作面开挖后的上覆岩层塑性变形、运动位移变化、应力重新分布变化,最终得出工作面开采后覆岩内部裂隙场分布及卸压瓦斯运移通道位置。分析模拟结果可知:顶板上方40m以内主要发生拉破坏,50-70m以内主要发生剪破坏;距离工作面顶板50m以上覆岩内部应力下降梯度已经明显减小,且下沉位移量突然锐减,顶板70m以上覆岩应力卸压值小于20%,下沉位移量量接近0;水平方向距离进回风巷25-35m范围内覆岩水平位移差值最大,水平应力变化量也最大,表明此区域处于纵向裂隙发育区。因此,综合分析得出裂隙瓦斯富集通道垂直距离煤层顶板50-70m,水平距离巷道25-35m。(2)根据工作面开挖模拟覆岩裂隙分布结果,建立覆岩裂隙卸压瓦斯抽采模型,模拟走向高抽巷及倾向钻孔抽采覆岩卸压瓦斯抽采效果和抽采范围。首先利用COMSOL软件建立8210工作面覆岩卸压瓦斯抽采模型,并根据覆岩内部裂隙分布及瓦斯涌出源项设置模型的孔隙率渗透率及各源项卸压瓦斯通量,对比分析抽放前后覆岩内瓦斯压力云图可得:抽采40天后,走向高抽巷一侧,竖直方向上瓦斯裂隙通道内瓦斯压力由原始的2MPa降至0.6Mpa,水平方向26m以内瓦斯压力降至0.74MPa;单个倾向钻孔周边7.5m处瓦斯压力由2MPa降至0.74MPa,根据钻孔有效抽采半径定义得知钻孔的有效抽放半径为7.5m。(3)根据模拟覆岩卸压瓦斯抽采效果及抽采范围,设计8210工作面覆岩布置走向高抽巷及倾向钻孔布置参数。走向高抽巷设置在覆岩裂隙带下部,垂向距离采空区顶板55m位置处,水平方向距回风巷30m;倾向钻孔钻场设置在布置在相邻备采工作面高抽巷内,每隔30m布置一个钻场,每个钻场布置9个钻孔,各钻孔孔口相距0.5m,终孔相距13m,钻孔长度为100m—120m。(4)结合模拟结果及8210工作面覆岩走向高抽巷配合倾向钻孔抽采布置设计参数,计算预测布置走向高抽巷及倾向钻孔后工作面瓦斯抽采效果,预测得知:走向高抽巷及倾向钻孔有效抽采范围内瓦斯含量由18.69m3/m3降至3.37m3/m3,降低82%;走向高抽巷单位时间瓦斯抽采量为40.78m3/min,倾向钻孔单位时间瓦斯抽采量为27.58m3/min,倾向钻孔瓦斯抽采能力为走向高抽巷的67.4%;根据工作面瓦斯涌出量,计算可知单独使用走向高抽巷抽采时,工作面瓦斯抽采率为47.8%,配合倾向钻孔后,工作面瓦斯抽采率由47.8%提升至79.7%,瓦斯抽采达标。
[Abstract]:In the mining of high gas coal seam group, due to the influence of mining movement, the gas in the upper adjacent layer contains gas to desorb and pour into the working face, resulting in gas exceeding in the working face, so the gas extraction of the upper adjacent layer is getting more and more attention. in the mining process of the 8210 working face of the 15 # coal seam of Yangquan Five Mine, the gas emission amount in the overlying rock accounts for 90% of the gas emission amount in the working face, the invention provides a method for discharging pressure gas by using an adjacent layer on an adjacent layer of a high-suction tunnel in the working face, and the final hole is positioned in the crack belt inside the top plate of the air inlet tunnel of the coal mining working face, and the pressure relief gas in the crack belt on the air inlet side is extracted, thereby increasing the gas extraction range of the rock discharge pressure of the overlying rock. Based on the geological conditions of rock-overlying strata in the 8210 working face and the distribution of gas-bearing strata, combined with theoretical research and numerical simulation, the redistribution of stress redistribution of rock-overlying strata, distribution of rock-overlying fracture, pressure relief gas flow, pressure relief gas extraction and extraction effect are studied. This paper provides an important reference for the gas extraction and extraction of rock-covered fracture zone. The specific research contents are as follows: (1) After the mining of the working face, the distribution of the fracture distribution in the overlying rock is studied, so as to determine the area of gas accumulation in the overlying rock, and provide the basis for moving towards the high suction lane and the inclined drilling arrangement. Firstly, a mining model of 8210 working face is established by FLAC3D simulation software. Through analyzing the plastic deformation, movement displacement and redistribution of the overlying strata after excavation of the working face, the distribution of the fracture field and the position of the pressure relief gas migration channel are finally obtained. According to the simulation results, the main occurrence of tensile failure within 40m above the top plate is mainly shear failure within 50-70m; the gradient of the internal stress of the overlying rock above the top plate 50m of the working surface is obviously reduced, and the sinking displacement suddenly decreases abruptly, and the stress relief value of the overlying rock above the top plate 70m is less than 20%. The displacement amount of subsidence is close to 0; the horizontal displacement difference is the largest in the range of 25-35m in the horizontal direction, and the variation of horizontal stress is also the largest, indicating that this area is in the longitudinal fissure development zone. Therefore, the comprehensive analysis shows that the vertical distance of the fissure gas enrichment channel is 50-70m and the horizontal distance is 25-35m. and (2) according to the distribution result of the rock-covered fracture of the working face, establishing a rock-clad fracture pressure-relief gas extraction model, and simulating the extraction effect and the extraction range of the gas extraction and the gas extraction for the high-pressure-pumping lane and the inclined borehole. First of all, using COMSOL software to build 8210 working face overburden pressure-relief gas extraction model, and according to the distribution of fracture distribution in the overlying rock and the gas emission source item, the porosity and gas flux of each source item are set, and the gas pressure cloud picture in the overlying rock before and after pumping is compared and analyzed. After 40 days of pumping, In the vertical direction, the gas pressure in the gas crack channel is reduced from 2MPa to 0.6Mpa, and the gas pressure in the horizontal direction 26m is reduced to 0. 74MPa, and the gas pressure at the periphery of the single inclined borehole is 7. 5m, and the gas pressure is reduced from 2MPa to 0.74MPa. According to the definition of effective extraction radius of borehole, it is known that the effective pumping radius of the borehole is 7.5m. (3) According to the effect of gas extraction and extraction and extraction range of the simulated overburden pressure relief, the design 8210 working face overburden is designed to move towards the high suction lane and the inclined borehole layout parameters. and the inclined drilling drilling field is arranged in the high suction lane arranged in the adjacent preparation working face, a drilling field is arranged every 30m, 9 drilling holes are arranged in each drilling field, Each drilling orifice is located at a distance of 0. 5m, the final hole is 13m, and the drilling length is 100m2/ 120m. (4) combining the simulation results and the design parameters of the 8210 working face overlying rock toward the high suction lane, calculating the gas extraction effect of the working face after the prediction is arranged towards the high suction lane and the inclined hole, and predicting that: The gas content in the effective pumping range from 18. 69m3/ m3 to 3.37m3/ m3 and the reduction of 82% in the effective pumping range of the high suction lane and the inclined borehole. The gas extraction capacity for the unit time of the high pumping lane is 40. 78m3/ min. The gas extraction capacity of the inclined drilling unit is 27,58m3/ min, and the drilling gas extraction capacity of the inclined drilling unit is 66.7% of the direction to the high suction lane. According to the gas emission amount in the working face, the gas extraction rate of the working face is 47. 8%, and the gas extraction rate of the working face is increased from 47. 8% to 77.9%, and the gas extraction is up to the standard.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD712.6

【相似文献】

相关期刊论文 前10条

1 刘冠学,唐永志,许培德,甘林堂;谢二矿高抽巷布置及使用效果分析[J];矿业安全与环保;2000年04期

2 马其祥,徐廷奎,肖大鹏;大湾煤矿高抽巷最佳层位选择[J];矿业安全与环保;2004年S1期

3 李青柏;;高抽巷的联合设计及应用[J];科技信息;2010年23期

4 王成;;顶板瓦斯高抽巷合理抽放负压数值模拟研究[J];工业安全与环保;2011年01期

5 吴同性;赵保清;李超亚;;耿村煤矿高抽巷合理层位布置研究[J];中州煤炭;2013年03期

6 李欢;赵志军;;耿村煤矿高抽巷气体异常变化规律及三带范围研究[J];煤炭工程;2013年03期

7 马洪芬;平太保;毛桃良;;高抽巷技术在黄岩汇煤矿的应用研究[J];山西焦煤科技;2013年06期

8 程攀;;走向高抽巷合理层位确定的数值模拟[J];煤炭技术;2014年03期

9 王旭宏,赵长春;倾向高抽巷在阳泉五矿综放工作面的应用[J];河北煤炭;2004年06期

10 邵广印;;谢桥矿综采面高抽巷布置层位探讨[J];煤炭技术;2008年01期

相关会议论文 前8条

1 黄文忠;周海军;张志强;刘东兴;;建新矿1010高抽巷抽放试验分析[A];江西省煤炭工业协会、江西省煤炭学会——2005年工作暨学术年会学术论文集[C];2005年

2 郝世俊;孙荣军;周新莉;;大直径拐弯钻孔替代倾斜高抽巷抽放瓦斯的可行性研究[A];第十三届全国探矿工程(岩土钻掘工程)学术研讨会论文专辑[C];2005年

3 原德胜;何建华;;岩石高抽巷在高瓦斯易自燃煤层综采面的实践[A];安全高效矿井建设与开采技术——陕西省煤炭学会学术年会论文集(2010)[C];2010年

4 邓福保;黄文忠;周海军;胡菊印;张志强;刘东兴;;建新矿1010高抽巷抽放瓦斯实践[A];江西省煤炭工业协会、江西省煤炭学会第九次优秀论文评选[C];2006年

5 郭有慧;屈庆栋;;后伪高抽巷治理综采放顶煤工作面初采瓦斯[A];瓦斯地质与瓦斯防治进展[C];2007年

6 贾天让;薛明理;史小卫;;煤层顶板高抽巷瓦斯抽放技术在“三软”厚煤层综放工作面的应用[A];瓦斯地质理论与实践——中国煤炭学会瓦斯地质专业委员会第五次全国瓦斯地质学术研讨会论文集[C];2005年

7 王怀新;;煤层顶板高抽巷瓦斯抽放技术在“三软”不稳定厚煤层综放工作面的应用[A];瓦斯地质理论与实践——中国煤炭学会瓦斯地质专业委员会第五次全国瓦斯地质学术研讨会论文集[C];2005年

8 万火金;;采用高抽巷解决回采工作面瓦斯超限[A];江西省煤炭工业协会、江西省煤炭学会第九次优秀论文评选[C];2006年

相关重要报纸文章 前1条

1 陈开云;攻克国内第一口地面瓦斯高抽巷钻孔[N];中煤地质报;2007年

相关硕士学位论文 前10条

1 刘明信;王庄矿9101工作面高抽巷瓦斯抽采技术研究[D];河南理工大学;2015年

2 陈伟;胡家河矿高抽巷瓦斯抽采数值模拟研究[D];西安科技大学;2015年

3 郭召顺;亭南煤矿205工作面顶板高抽巷层位优选研究[D];西安科技大学;2015年

4 杜政贤;外错高抽巷上行钻孔卸压瓦斯抽采技术研究[D];西安科技大学;2016年

5 娄金福;顶板瓦斯高抽巷采动变形机理及优化布置研究[D];中国矿业大学;2008年

6 马卫波;余吾煤业顶板高抽巷合理布置与支护技术研究[D];中国矿业大学;2014年

7 高佳佳;大采高工作面顶板走向高抽巷合理层位研究[D];河南理工大学;2014年

8 王春桥;大佛寺矿走向高抽巷瓦斯抽采参数优化研究[D];西安科技大学;2013年

9 葛伟伟;大采高倾斜长壁综采面顶板倾斜高抽巷合理位置研究[D];安徽理工大学;2015年

10 王林;铜川焦坪矿区顶板走向高抽巷合理层位研究[D];河南理工大学;2009年



本文编号:2286697

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2286697.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7bbe0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com