走向高抽巷配合倾向钻孔抽采上邻近层卸压瓦斯技术
[Abstract]:In the mining of high gas coal seam group, due to the influence of mining movement, the gas in the upper adjacent layer contains gas to desorb and pour into the working face, resulting in gas exceeding in the working face, so the gas extraction of the upper adjacent layer is getting more and more attention. in the mining process of the 8210 working face of the 15 # coal seam of Yangquan Five Mine, the gas emission amount in the overlying rock accounts for 90% of the gas emission amount in the working face, the invention provides a method for discharging pressure gas by using an adjacent layer on an adjacent layer of a high-suction tunnel in the working face, and the final hole is positioned in the crack belt inside the top plate of the air inlet tunnel of the coal mining working face, and the pressure relief gas in the crack belt on the air inlet side is extracted, thereby increasing the gas extraction range of the rock discharge pressure of the overlying rock. Based on the geological conditions of rock-overlying strata in the 8210 working face and the distribution of gas-bearing strata, combined with theoretical research and numerical simulation, the redistribution of stress redistribution of rock-overlying strata, distribution of rock-overlying fracture, pressure relief gas flow, pressure relief gas extraction and extraction effect are studied. This paper provides an important reference for the gas extraction and extraction of rock-covered fracture zone. The specific research contents are as follows: (1) After the mining of the working face, the distribution of the fracture distribution in the overlying rock is studied, so as to determine the area of gas accumulation in the overlying rock, and provide the basis for moving towards the high suction lane and the inclined drilling arrangement. Firstly, a mining model of 8210 working face is established by FLAC3D simulation software. Through analyzing the plastic deformation, movement displacement and redistribution of the overlying strata after excavation of the working face, the distribution of the fracture field and the position of the pressure relief gas migration channel are finally obtained. According to the simulation results, the main occurrence of tensile failure within 40m above the top plate is mainly shear failure within 50-70m; the gradient of the internal stress of the overlying rock above the top plate 50m of the working surface is obviously reduced, and the sinking displacement suddenly decreases abruptly, and the stress relief value of the overlying rock above the top plate 70m is less than 20%. The displacement amount of subsidence is close to 0; the horizontal displacement difference is the largest in the range of 25-35m in the horizontal direction, and the variation of horizontal stress is also the largest, indicating that this area is in the longitudinal fissure development zone. Therefore, the comprehensive analysis shows that the vertical distance of the fissure gas enrichment channel is 50-70m and the horizontal distance is 25-35m. and (2) according to the distribution result of the rock-covered fracture of the working face, establishing a rock-clad fracture pressure-relief gas extraction model, and simulating the extraction effect and the extraction range of the gas extraction and the gas extraction for the high-pressure-pumping lane and the inclined borehole. First of all, using COMSOL software to build 8210 working face overburden pressure-relief gas extraction model, and according to the distribution of fracture distribution in the overlying rock and the gas emission source item, the porosity and gas flux of each source item are set, and the gas pressure cloud picture in the overlying rock before and after pumping is compared and analyzed. After 40 days of pumping, In the vertical direction, the gas pressure in the gas crack channel is reduced from 2MPa to 0.6Mpa, and the gas pressure in the horizontal direction 26m is reduced to 0. 74MPa, and the gas pressure at the periphery of the single inclined borehole is 7. 5m, and the gas pressure is reduced from 2MPa to 0.74MPa. According to the definition of effective extraction radius of borehole, it is known that the effective pumping radius of the borehole is 7.5m. (3) According to the effect of gas extraction and extraction and extraction range of the simulated overburden pressure relief, the design 8210 working face overburden is designed to move towards the high suction lane and the inclined borehole layout parameters. and the inclined drilling drilling field is arranged in the high suction lane arranged in the adjacent preparation working face, a drilling field is arranged every 30m, 9 drilling holes are arranged in each drilling field, Each drilling orifice is located at a distance of 0. 5m, the final hole is 13m, and the drilling length is 100m2/ 120m. (4) combining the simulation results and the design parameters of the 8210 working face overlying rock toward the high suction lane, calculating the gas extraction effect of the working face after the prediction is arranged towards the high suction lane and the inclined hole, and predicting that: The gas content in the effective pumping range from 18. 69m3/ m3 to 3.37m3/ m3 and the reduction of 82% in the effective pumping range of the high suction lane and the inclined borehole. The gas extraction capacity for the unit time of the high pumping lane is 40. 78m3/ min. The gas extraction capacity of the inclined drilling unit is 27,58m3/ min, and the drilling gas extraction capacity of the inclined drilling unit is 66.7% of the direction to the high suction lane. According to the gas emission amount in the working face, the gas extraction rate of the working face is 47. 8%, and the gas extraction rate of the working face is increased from 47. 8% to 77.9%, and the gas extraction is up to the standard.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD712.6
【相似文献】
相关期刊论文 前10条
1 刘冠学,唐永志,许培德,甘林堂;谢二矿高抽巷布置及使用效果分析[J];矿业安全与环保;2000年04期
2 马其祥,徐廷奎,肖大鹏;大湾煤矿高抽巷最佳层位选择[J];矿业安全与环保;2004年S1期
3 李青柏;;高抽巷的联合设计及应用[J];科技信息;2010年23期
4 王成;;顶板瓦斯高抽巷合理抽放负压数值模拟研究[J];工业安全与环保;2011年01期
5 吴同性;赵保清;李超亚;;耿村煤矿高抽巷合理层位布置研究[J];中州煤炭;2013年03期
6 李欢;赵志军;;耿村煤矿高抽巷气体异常变化规律及三带范围研究[J];煤炭工程;2013年03期
7 马洪芬;平太保;毛桃良;;高抽巷技术在黄岩汇煤矿的应用研究[J];山西焦煤科技;2013年06期
8 程攀;;走向高抽巷合理层位确定的数值模拟[J];煤炭技术;2014年03期
9 王旭宏,赵长春;倾向高抽巷在阳泉五矿综放工作面的应用[J];河北煤炭;2004年06期
10 邵广印;;谢桥矿综采面高抽巷布置层位探讨[J];煤炭技术;2008年01期
相关会议论文 前8条
1 黄文忠;周海军;张志强;刘东兴;;建新矿1010高抽巷抽放试验分析[A];江西省煤炭工业协会、江西省煤炭学会——2005年工作暨学术年会学术论文集[C];2005年
2 郝世俊;孙荣军;周新莉;;大直径拐弯钻孔替代倾斜高抽巷抽放瓦斯的可行性研究[A];第十三届全国探矿工程(岩土钻掘工程)学术研讨会论文专辑[C];2005年
3 原德胜;何建华;;岩石高抽巷在高瓦斯易自燃煤层综采面的实践[A];安全高效矿井建设与开采技术——陕西省煤炭学会学术年会论文集(2010)[C];2010年
4 邓福保;黄文忠;周海军;胡菊印;张志强;刘东兴;;建新矿1010高抽巷抽放瓦斯实践[A];江西省煤炭工业协会、江西省煤炭学会第九次优秀论文评选[C];2006年
5 郭有慧;屈庆栋;;后伪高抽巷治理综采放顶煤工作面初采瓦斯[A];瓦斯地质与瓦斯防治进展[C];2007年
6 贾天让;薛明理;史小卫;;煤层顶板高抽巷瓦斯抽放技术在“三软”厚煤层综放工作面的应用[A];瓦斯地质理论与实践——中国煤炭学会瓦斯地质专业委员会第五次全国瓦斯地质学术研讨会论文集[C];2005年
7 王怀新;;煤层顶板高抽巷瓦斯抽放技术在“三软”不稳定厚煤层综放工作面的应用[A];瓦斯地质理论与实践——中国煤炭学会瓦斯地质专业委员会第五次全国瓦斯地质学术研讨会论文集[C];2005年
8 万火金;;采用高抽巷解决回采工作面瓦斯超限[A];江西省煤炭工业协会、江西省煤炭学会第九次优秀论文评选[C];2006年
相关重要报纸文章 前1条
1 陈开云;攻克国内第一口地面瓦斯高抽巷钻孔[N];中煤地质报;2007年
相关硕士学位论文 前10条
1 刘明信;王庄矿9101工作面高抽巷瓦斯抽采技术研究[D];河南理工大学;2015年
2 陈伟;胡家河矿高抽巷瓦斯抽采数值模拟研究[D];西安科技大学;2015年
3 郭召顺;亭南煤矿205工作面顶板高抽巷层位优选研究[D];西安科技大学;2015年
4 杜政贤;外错高抽巷上行钻孔卸压瓦斯抽采技术研究[D];西安科技大学;2016年
5 娄金福;顶板瓦斯高抽巷采动变形机理及优化布置研究[D];中国矿业大学;2008年
6 马卫波;余吾煤业顶板高抽巷合理布置与支护技术研究[D];中国矿业大学;2014年
7 高佳佳;大采高工作面顶板走向高抽巷合理层位研究[D];河南理工大学;2014年
8 王春桥;大佛寺矿走向高抽巷瓦斯抽采参数优化研究[D];西安科技大学;2013年
9 葛伟伟;大采高倾斜长壁综采面顶板倾斜高抽巷合理位置研究[D];安徽理工大学;2015年
10 王林;铜川焦坪矿区顶板走向高抽巷合理层位研究[D];河南理工大学;2009年
,本文编号:2286697
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2286697.html